Precision ICU Resource Planning: A Multimodal Model for Brain Surgery Outcomes
- URL: http://arxiv.org/abs/2412.15818v1
- Date: Fri, 20 Dec 2024 11:59:34 GMT
- Title: Precision ICU Resource Planning: A Multimodal Model for Brain Surgery Outcomes
- Authors: Maximilian Fischer, Florian M. Hauptmann, Robin Peretzke, Paul Naser, Peter Neher, Jan-Oliver Neumann, Klaus Maier-Hein,
- Abstract summary: multimodal approaches that combine clinical data with imaging data outperform the current clinical data only baseline from 0.29 [F1] to 0.30 [F1]
This study demonstrates that effective ICU admission prediction benefits from multimodal data fusion, especially in contexts of severe class imbalance.
- Score: 0.0918307006755572
- License:
- Abstract: Although advances in brain surgery techniques have led to fewer postoperative complications requiring Intensive Care Unit (ICU) monitoring, the routine transfer of patients to the ICU remains the clinical standard, despite its high cost. Predictive Gradient Boosted Trees based on clinical data have attempted to optimize ICU admission by identifying key risk factors pre-operatively; however, these approaches overlook valuable imaging data that could enhance prediction accuracy. In this work, we show that multimodal approaches that combine clinical data with imaging data outperform the current clinical data only baseline from 0.29 [F1] to 0.30 [F1], when only pre-operative clinical data is used and from 0.37 [F1] to 0.41 [F1], for pre- and post-operative data. This study demonstrates that effective ICU admission prediction benefits from multimodal data fusion, especially in contexts of severe class imbalance.
Related papers
- Aiming for Relevance [12.924312063047816]
We introduce novel vital sign prediction performance metrics that align with clinical contexts.
These metrics are derived from empirical utility curves obtained in a previous study through interviews with ICU clinicians.
We employ these metrics as loss functions for neural networks, resulting in models that excel in predicting clinically significant events.
arXiv Detail & Related papers (2024-03-27T15:11:07Z) - Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
Stroke is a common disabling neurological condition that affects about one-quarter of the adult population over age 25.
Our proposed fusion model achieves 0.87, 0.80 and 80.45% for AUC, F1-score and accuracy, respectively.
arXiv Detail & Related papers (2024-02-16T18:51:42Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - TranSOP: Transformer-based Multimodal Classification for Stroke
Treatment Outcome Prediction [2.358784542343728]
We propose a transformer-based multimodal network (TranSOP) for a classification approach that employs clinical metadata and imaging information.
This includes a fusion module to efficiently combine 3D non-contrast computed tomography (NCCT) features and clinical information.
In comparative experiments using unimodal and multimodal data, we achieve a state-of-the-art AUC score of 0.85.
arXiv Detail & Related papers (2023-01-25T21:05:10Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
We propose a graph-transformer-based network to handle heterogeneous clinical data.
We show the benefit of our pre-training method in a self-supervised and a transfer learning setting.
arXiv Detail & Related papers (2022-07-21T16:59:09Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
This work addresses the task of optimally extracting information from longitudinal patient data in the real-world setting.
We show that with machine learning methods suited for patient trajectories modeling, we can predict disability progression of patients in a two-year horizon.
Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction.
arXiv Detail & Related papers (2020-11-09T20:48:00Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.