On Robust Cross Domain Alignment
- URL: http://arxiv.org/abs/2412.15861v1
- Date: Fri, 20 Dec 2024 12:56:28 GMT
- Title: On Robust Cross Domain Alignment
- Authors: Anish Chakrabarty, Arkaprabha Basu, Swagatam Das,
- Abstract summary: The Gromov-Wasserstein (GW) distance is an effective measure of alignment between distributions supported on distinct ambient spaces.
We discuss three contextually novel techniques to robustify GW and its variants.
For each method, we explore metric properties and robustness guarantees along with their co-dependencies and individual relations with the GW distance.
- Score: 18.591073295129004
- License:
- Abstract: The Gromov-Wasserstein (GW) distance is an effective measure of alignment between distributions supported on distinct ambient spaces. Calculating essentially the mutual departure from isometry, it has found vast usage in domain translation and network analysis. It has long been shown to be vulnerable to contamination in the underlying measures. All efforts to introduce robustness in GW have been inspired by similar techniques in optimal transport (OT), which predominantly advocate partial mass transport or unbalancing. In contrast, the cross-domain alignment problem being fundamentally different from OT, demands specific solutions to tackle diverse applications and contamination regimes. Deriving from robust statistics, we discuss three contextually novel techniques to robustify GW and its variants. For each method, we explore metric properties and robustness guarantees along with their co-dependencies and individual relations with the GW distance. For a comprehensive view, we empirically validate their superior resilience to contamination under real machine learning tasks against state-of-the-art methods.
Related papers
- Exploiting Aggregation and Segregation of Representations for Domain Adaptive Human Pose Estimation [50.31351006532924]
Human pose estimation (HPE) has received increasing attention recently due to its wide application in motion analysis, virtual reality, healthcare, etc.
It suffers from the lack of labeled diverse real-world datasets due to the time- and labor-intensive annotation.
We introduce a novel framework that capitalizes on both representation aggregation and segregation for domain adaptive human pose estimation.
arXiv Detail & Related papers (2024-12-29T17:59:45Z) - Multi-Modality Driven LoRA for Adverse Condition Depth Estimation [61.525312117638116]
We propose Multi-Modality Driven LoRA (MMD-LoRA) for Adverse Condition Depth Estimation.
It consists of two core components: Prompt Driven Domain Alignment (PDDA) and Visual-Text Consistent Contrastive Learning (VTCCL)
It achieves state-of-the-art performance on the nuScenes and Oxford RobotCar datasets.
arXiv Detail & Related papers (2024-12-28T14:23:58Z) - Metric properties of partial and robust Gromov-Wasserstein distances [3.9485589956945204]
The Gromov-Wasserstein (GW) distances define a family of metrics, based on ideas from optimal transport.
GW distances are inherently sensitive to outlier noise and cannot accommodate partial matching.
We show that our new distances define true metrics, that they induce the same topology as the GW distances, and that they enjoy additional robustness to perturbations.
arXiv Detail & Related papers (2024-11-04T15:53:45Z) - Optimal Aggregation of Prediction Intervals under Unsupervised Domain Shift [9.387706860375461]
A distribution shift occurs when the underlying data-generating process changes, leading to a deviation in the model's performance.
The prediction interval serves as a crucial tool for characterizing uncertainties induced by their underlying distribution.
We propose methodologies for aggregating prediction intervals to obtain one with minimal width and adequate coverage on the target domain.
arXiv Detail & Related papers (2024-05-16T17:55:42Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
Generalizing policies across different domains with dynamics mismatch poses a significant challenge in reinforcement learning.
We present the Value-Guided Data Filtering (VGDF) algorithm, which selectively shares transitions from the source domain based on the proximity of paired value targets.
arXiv Detail & Related papers (2023-05-28T04:08:40Z) - Few Shot Generative Model Adaption via Relaxed Spatial Structural
Alignment [130.84010267004803]
Training a generative adversarial network (GAN) with limited data has been a challenging task.
A feasible solution is to start with a GAN well-trained on a large scale source domain and adapt it to the target domain with a few samples, termed as few shot generative model adaption.
We propose a relaxed spatial structural alignment method to calibrate the target generative models during the adaption.
arXiv Detail & Related papers (2022-03-06T14:26:25Z) - Cross-Domain Imitation Learning via Optimal Transport [12.221297423161502]
Cross-domain imitation learning studies how to leverage expert demonstrations of one agent to train an imitation agent with a different embodiment or morphology.
We propose Gromov-Wasserstein Imitation Learning (GWIL), a method for cross-domain imitation that uses the Gromov-Wasserstein distance to align and compare states between the different spaces of the agents.
arXiv Detail & Related papers (2021-10-07T17:59:49Z) - Domain Adaptation Gaze Estimation by Embedding with Prediction
Consistency [10.246471430786244]
This paper proposes an unsupervised method for domain adaptation gaze estimation.
We employ source gaze to form a locally linear representation in the gaze space for each target domain prediction.
The same linear combinations are applied in the embedding space to generate hypothesis embedding for the target domain sample.
arXiv Detail & Related papers (2020-11-15T13:33:43Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
We propose aSimultaneous Semantic Alignment Network (SSAN) to simultaneously exploit correlations among categories and align the centroids for each category across domains.
By leveraging target pseudo-labels, a robust triplet-centroid alignment mechanism is explicitly applied to align feature representations for each category.
Experiments on various HDA tasks across text-to-image, image-to-image and text-to-text successfully validate the superiority of our SSAN against state-of-the-art HDA methods.
arXiv Detail & Related papers (2020-08-04T16:20:37Z) - Towards Certified Robustness of Distance Metric Learning [53.96113074344632]
We advocate imposing an adversarial margin in the input space so as to improve the generalization and robustness of metric learning algorithms.
We show that the enlarged margin is beneficial to the generalization ability by using the theoretical technique of algorithmic robustness.
arXiv Detail & Related papers (2020-06-10T16:51:53Z) - Theoretical Guarantees for Bridging Metric Measure Embedding and Optimal
Transport [18.61019008000831]
We consider a method allowing to embed the metric measure spaces in a common Euclidean space and compute an optimal transport (OT) on the embedded distributions.
This leads to what we call a sub-embedding robust Wasserstein (SERW) distance.
arXiv Detail & Related papers (2020-02-19T17:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.