CCNDF: Curvature Constrained Neural Distance Fields from 3D LiDAR Sequences
- URL: http://arxiv.org/abs/2412.15909v1
- Date: Fri, 20 Dec 2024 13:59:27 GMT
- Title: CCNDF: Curvature Constrained Neural Distance Fields from 3D LiDAR Sequences
- Authors: Akshit Singh, Karan Bhakuni, Rajendra Nagar,
- Abstract summary: We propose a novel methodology leveraging second-order derivatives of the signed distance field for improved neural field learning.
Our approach addresses limitations by accurately estimating signed distance, offering a more comprehensive understanding of underlying geometry.
- Score: 1.2835555561822447
- License:
- Abstract: Neural distance fields (NDF) have emerged as a powerful tool for addressing challenges in 3D computer vision and graphics downstream problems. While significant progress has been made to learn NDF from various kind of sensor data, a crucial aspect that demands attention is the supervision of neural fields during training as the ground-truth NDFs are not available for large-scale outdoor scenes. Previous works have utilized various forms of expected signed distance to guide model learning. Yet, these approaches often need to pay more attention to critical considerations of surface geometry and are limited to small-scale implementations. To this end, we propose a novel methodology leveraging second-order derivatives of the signed distance field for improved neural field learning. Our approach addresses limitations by accurately estimating signed distance, offering a more comprehensive understanding of underlying geometry. To assess the efficacy of our methodology, we conducted comparative evaluations against prevalent methods for mapping and localization tasks, which are primary application areas of NDF. Our results demonstrate the superiority of the proposed approach, highlighting its potential for advancing the capabilities of neural distance fields in computer vision and graphics applications.
Related papers
- Few-Shot Unsupervised Implicit Neural Shape Representation Learning with Spatial Adversaries [8.732260277121547]
Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities.
Within the realm of 3D shape representation, Neural Signed Distance Functions (SDF) have demonstrated remarkable potential in faithfully encoding intricate shape geometry.
arXiv Detail & Related papers (2024-08-27T14:54:33Z) - Unsupervised Occupancy Learning from Sparse Point Cloud [8.732260277121547]
Implicit Neural Representations have gained prominence as a powerful framework for capturing complex data modalities.
In this paper, we propose a method to infer occupancy fields instead of Neural Signed Distance Functions.
We highlight its capacity to improve implicit shape inference with respect to baselines and the state-of-the-art using synthetic and real data.
arXiv Detail & Related papers (2024-04-03T14:05:39Z) - Reg-NF: Efficient Registration of Implicit Surfaces within Neural Fields [6.949522577812908]
We present Reg-NF, a neural fields-based registration that optimises for the relative 6-DoF transformation between two arbitrary neural fields.
Key components of Reg-NF include a bidirectional registration loss, multi-view surface sampling, and utilisation of volumetric signed distance functions.
arXiv Detail & Related papers (2024-02-15T05:31:03Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.
We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - A Survey on Deep Learning-Based Monocular Spacecraft Pose Estimation:
Current State, Limitations and Prospects [7.08026800833095]
Estimating the pose of an uncooperative spacecraft is an important computer vision problem for enabling vision-based systems in orbit.
Following the general trend in computer vision, more and more works have been focusing on leveraging Deep Learning (DL) methods to address this problem.
Despite promising research-stage results, major challenges preventing the use of such methods in real-life missions still stand in the way.
arXiv Detail & Related papers (2023-05-12T09:52:53Z) - CAP-UDF: Learning Unsigned Distance Functions Progressively from Raw Point Clouds with Consistency-Aware Field Optimization [54.69408516025872]
CAP-UDF is a novel method to learn consistency-aware UDF from raw point clouds.
We train a neural network to gradually infer the relationship between queries and the approximated surface.
We also introduce a polygonization algorithm to extract surfaces using the gradients of the learned UDF.
arXiv Detail & Related papers (2022-10-06T08:51:08Z) - iSDF: Real-Time Neural Signed Distance Fields for Robot Perception [64.80458128766254]
iSDF is a continuous learning system for real-time signed distance field reconstruction.
It produces more accurate reconstructions and better approximations of collision costs and gradients.
arXiv Detail & Related papers (2022-04-05T15:48:39Z) - On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation [57.766049538913926]
Supervised approaches to 3D pose estimation from single images are remarkably effective when labeled data is abundant.
Much of the recent attention has shifted towards semi and (or) weakly supervised learning.
We propose to impose multi-view geometrical constraints by means of a differentiable triangulation and to use it as form of self-supervision during training when no labels are available.
arXiv Detail & Related papers (2022-03-29T19:11:54Z) - Neural Fields in Visual Computing and Beyond [54.950885364735804]
Recent advances in machine learning have created increasing interest in solving visual computing problems using coordinate-based neural networks.
neural fields have seen successful application in the synthesis of 3D shapes and image, animation of human bodies, 3D reconstruction, and pose estimation.
This report provides context, mathematical grounding, and an extensive review of literature on neural fields.
arXiv Detail & Related papers (2021-11-22T18:57:51Z) - LSPnet: A 2D Localization-oriented Spacecraft Pose Estimation Neural
Network [10.6872574091924]
This work explores a novel methodology, using Convolutional Neural Networks (CNNs) for estimating the pose of uncooperative spacecrafts.
Contrary to other approaches, the proposed CNN directly regresses poses without needing any prior 3D information.
The performed experiments show how this work competes with the state-of-the-art in uncooperative spacecraft pose estimation.
arXiv Detail & Related papers (2021-04-19T12:46:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.