Self-supervised Spatial-Temporal Learner for Precipitation Nowcasting
- URL: http://arxiv.org/abs/2412.15917v1
- Date: Fri, 20 Dec 2024 14:09:36 GMT
- Title: Self-supervised Spatial-Temporal Learner for Precipitation Nowcasting
- Authors: Haotian Li, Arno Siebes, Siamak Mehrkanoon,
- Abstract summary: Short-term prediction of weather is essential for making timely and weather-dependent decisions.
In this work, we leverage the benefits of self-supervised learning and integrate it with spatial-temporal learning to develop a novel model, SpaT-SparK.
- Score: 5.365086662531667
- License:
- Abstract: Nowcasting, the short-term prediction of weather, is essential for making timely and weather-dependent decisions. Specifically, precipitation nowcasting aims to predict precipitation at a local level within a 6-hour time frame. This task can be framed as a spatial-temporal sequence forecasting problem, where deep learning methods have been particularly effective. However, despite advancements in self-supervised learning, most successful methods for nowcasting remain fully supervised. Self-supervised learning is advantageous for pretraining models to learn representations without requiring extensive labeled data. In this work, we leverage the benefits of self-supervised learning and integrate it with spatial-temporal learning to develop a novel model, SpaT-SparK. SpaT-SparK comprises a CNN-based encoder-decoder structure pretrained with a masked image modeling (MIM) task and a translation network that captures temporal relationships among past and future precipitation maps in downstream tasks. We conducted experiments on the NL-50 dataset to evaluate the performance of SpaT-SparK. The results demonstrate that SpaT-SparK outperforms existing baseline supervised models, such as SmaAt-UNet, providing more accurate nowcasting predictions.
Related papers
- Self-Supervised Learning with Probabilistic Density Labeling for Rainfall Probability Estimation [16.086011448639635]
SSLPDL is a post-processing method for estimating rainfall probability by post-processing NWP forecasts.
We introduce a straightforward labeling approach based on probability density to address the class imbalance in extreme weather phenomena.
Experimental results show that SSLPDL surpasses other precipitation forecasting models in regional precipitation post-processing.
arXiv Detail & Related papers (2024-12-08T05:56:09Z) - Enhancing Foundation Models for Time Series Forecasting via Wavelet-based Tokenization [74.3339999119713]
We develop a wavelet-based tokenizer that allows models to learn complex representations directly in the space of time-localized frequencies.
Our method first scales and decomposes the input time series, then thresholds and quantizes the wavelet coefficients, and finally pre-trains an autoregressive model to forecast coefficients for the forecast horizon.
arXiv Detail & Related papers (2024-12-06T18:22:59Z) - Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon [0.0]
This study presents a comprehensive methodology for modeling and forecasting the historical time series of active fire spots detected by the AQUA_M-T satellite in the Amazon, Brazil.
The approach employs a mixed Recurrent Neural Network (RNN) model, combining Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to predict the monthly accumulations of daily detected active fire spots.
arXiv Detail & Related papers (2024-09-04T13:11:59Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Disentangling Spatial and Temporal Learning for Efficient Image-to-Video
Transfer Learning [59.26623999209235]
We present DiST, which disentangles the learning of spatial and temporal aspects of videos.
The disentangled learning in DiST is highly efficient because it avoids the back-propagation of massive pre-trained parameters.
Extensive experiments on five benchmarks show that DiST delivers better performance than existing state-of-the-art methods by convincing gaps.
arXiv Detail & Related papers (2023-09-14T17:58:33Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Nowcasting-Nets: Deep Neural Network Structures for Precipitation
Nowcasting Using IMERG [1.9860735109145415]
We use Recurrent and Convolutional deep neural network structures to address the challenge of precipitation nowcasting.
A total of five models are trained using Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation data over the Eastern Contiguous United States (CONUS)
The models were designed to provide forecasts with a lead time of up to 1.5 hours and, by using a feedback loop approach, the ability of the models to extend the forecast time to 4.5 hours was also investigated.
arXiv Detail & Related papers (2021-08-16T02:55:32Z) - SmaAt-UNet: Precipitation Nowcasting using a Small Attention-UNet
Architecture [5.28539620288341]
We show that it is possible to produce an accurate precipitation nowcast using a data-driven neural network approach.
We evaluate our approaches on a real-life datasets using precipitation maps from the region of the Netherlands and binary images of cloud coverage of France.
arXiv Detail & Related papers (2020-07-08T20:33:10Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
We propose a machine learning approach for forecasting hierarchical time series.
Forecast reconciliation is the process of adjusting forecasts to make them coherent across the hierarchy.
We exploit the ability of a deep neural network to extract information capturing the structure of the hierarchy.
arXiv Detail & Related papers (2020-05-31T22:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.