論文の概要: Data Preparation for Fairness-Performance Trade-Offs: A Practitioner-Friendly Alternative?
- arxiv url: http://arxiv.org/abs/2412.15920v1
- Date: Fri, 20 Dec 2024 14:12:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:24:30.556625
- Title: Data Preparation for Fairness-Performance Trade-Offs: A Practitioner-Friendly Alternative?
- Title(参考訳): フェアネス・パフォーマンス・トレードオフのためのデータ準備 : 実践者フレンドリーな代替手段か?
- Authors: Gianmario Voria, Rebecca Di Matteo, Giammaria Giordano, Gemma Catolino, Fabio Palomba,
- Abstract要約: トレーニング前のバイアスを軽減する前処理技術は効果的だが、モデルの性能に影響を与え、統合が困難になる可能性がある。
本報告では,MLライフサイクルの初期段階において,最適に選択されたフェアネス・アウェアの実践が,フェアネスとパフォーマンスの両面でいかに向上するかを実証的に評価する。
FATEを用いてフェアネスとパフォーマンスのトレードオフを分析し、FATEが選択したパイプラインと、前処理のバイアス緩和技術による結果を比較する。
- 参考スコア(独自算出の注目度): 11.172805305320592
- License:
- Abstract: As machine learning (ML) systems are increasingly adopted across industries, addressing fairness and bias has become essential. While many solutions focus on ethical challenges in ML, recent studies highlight that data itself is a major source of bias. Pre-processing techniques, which mitigate bias before training, are effective but may impact model performance and pose integration difficulties. In contrast, fairness-aware Data Preparation practices are both familiar to practitioners and easier to implement, providing a more accessible approach to reducing bias. Objective. This registered report proposes an empirical evaluation of how optimally selected fairness-aware practices, applied in early ML lifecycle stages, can enhance both fairness and performance, potentially outperforming standard pre-processing bias mitigation methods. Method. To this end, we will introduce FATE, an optimization technique for selecting 'Data Preparation' pipelines that optimize fairness and performance. Using FATE, we will analyze the fairness-performance trade-off, comparing pipelines selected by FATE with results by pre-processing bias mitigation techniques.
- Abstract(参考訳): 機械学習(ML)システムは、業界全体でますます採用されているため、公正性とバイアスに対処することが不可欠になっている。
多くのソリューションがMLにおける倫理的課題に焦点を当てているが、最近の研究は、データ自体がバイアスの主な原因であることを示している。
トレーニング前のバイアスを軽減する前処理技術は効果的だが、モデルの性能に影響を与え、統合が困難になる可能性がある。
対照的に、公正を意識したデータ準備のプラクティスは実践者にも馴染みがあり、実装が容易であり、バイアスを減らすためのよりアクセスしやすいアプローチを提供する。
目的。
本報告は、MLライフサイクルの初期段階に適用された最適なフェアネス認識の実践が、フェアネスとパフォーマンスの両方を向上し、標準的な前処理バイアス軽減手法よりも優れた可能性を実証的に評価するものである。
方法。
この目的のために、フェアネスとパフォーマンスを最適化する'データ準備'パイプラインを選択する最適化手法であるFATEを紹介する。
FATEを用いてフェアネスとパフォーマンスのトレードオフを分析し、FATEが選択したパイプラインと、前処理のバイアス緩和技術による結果を比較する。
関連論文リスト
- ChatGPT Based Data Augmentation for Improved Parameter-Efficient Debiasing of LLMs [65.9625653425636]
大型言語モデル(LLM)は有害な社会的バイアスを示す。
そこで本研究では,ChatGPTを用いて合成学習データを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T01:28:48Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
本稿では,学習からランクへの学習ループに,効率よく解ける公正ランキングモデルを組み込む方法について述べる。
特に,本論文は,OWA目標の制約された最適化を通じてバックプロパゲーションを行う方法を示す最初のものである。
論文 参考訳(メタデータ) (2024-02-07T20:53:53Z) - FairSISA: Ensemble Post-Processing to Improve Fairness of Unlearning in
LLMs [6.689848416609951]
大規模言語モデル(LLM)における未学習と公平性の相互作用について検討する。
我々は、SISAとして知られる人気のある非学習フレームワークに焦点を当て、非結合シャードで訓練されたモデルのアンサンブルを作成する。
SISAによるアンサンブルモデルに対する後処理バイアス軽減手法を提案する。
論文 参考訳(メタデータ) (2023-12-12T16:44:47Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
多くの機械学習(ML)タスクでは、ラベル付きデータサンプルしか収集できないため、フェアネスのパフォーマンスが低下する可能性がある。
本稿では,限定的なトレーニングサンプルを用いたフェアネス認識学習課題をemphfair few-shot Learning問題として定義する。
そこで我々は,学習した知識をメタテストタスクに一般化し,様々なメタトレーニングタスクに公平な知識を蓄積する新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2023-08-28T06:31:37Z) - Towards Accelerated Model Training via Bayesian Data Selection [45.62338106716745]
本稿では,モデルの一般化損失に対するデータの影響を調べることによって,より合理的なデータ選択原理を提案する。
近年の研究では、モデルの一般化損失に対するデータの影響を調べることによって、より合理的なデータ選択の原則が提案されている。
この研究は、軽量ベイズ処理を活用し、大規模な事前訓練モデル上に構築された既製のゼロショット予測器を組み込むことにより、これらの問題を解決する。
論文 参考訳(メタデータ) (2023-08-21T07:58:15Z) - FITNESS: A Causal De-correlation Approach for Mitigating Bias in Machine
Learning Software [6.4073906779537095]
バイアスデータセットは不公平で潜在的に有害な結果をもたらす可能性がある。
本稿では,感性特徴とラベルの因果関係を関連づけたバイアス緩和手法を提案する。
我々のキーとなる考え方は、因果関係の観点からそのような効果を非相関化することで、モデルが繊細な特徴に基づいて予測することを避けることである。
論文 参考訳(メタデータ) (2023-05-23T06:24:43Z) - Fairness-Aware Data Valuation for Supervised Learning [4.874780144224057]
本研究では,Fairness-Aware Data vauatiOn (FADO)を提案する。
FADOを不公平化前処理技術の基礎として活用する方法を示す。
提案手法は,最大40ppの公正度を,ベースラインに比べて性能が1pp以下で向上することを示す。
論文 参考訳(メタデータ) (2023-03-29T18:51:13Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Preventing Discriminatory Decision-making in Evolving Data Streams [8.952662914331901]
機械学習のバイアスは、ここ10年で明らかに注目を集めている。
意思決定システムのバイアスに対処する最も公正な機械学習(fair-ML)は、オフライン設定のみに焦点を当てている。
オンラインシステムが現実世界で広く普及しているにもかかわらず、オンライン設定におけるバイアスを特定し修正する作業は極めて不十分である。
論文 参考訳(メタデータ) (2023-02-16T01:20:08Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
一般化線形モデルに焦点をあて、このサンプリングバイアスを調整しなければ、モデルは準最適に収束するか、あるいは最適解に収束しないかもしれないことを示す。
理論的保証を伴って適応的なアプローチを提案し、いくつかの既存手法を実証的に上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-08T18:20:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。