論文の概要: Less is More: Towards Green Code Large Language Models via Unified Structural Pruning
- arxiv url: http://arxiv.org/abs/2412.15921v1
- Date: Fri, 20 Dec 2024 14:13:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:24:36.531044
- Title: Less is More: Towards Green Code Large Language Models via Unified Structural Pruning
- Title(参考訳): より少ない - 統一構造解析によるグリーンコード大規模言語モデルを目指して
- Authors: Guang Yang, Yu Zhou, Xiangyu Zhang, Wei Cheng, Ke Liu, Xiang Chen, Terry Yue Zhuo, Taolue Chen,
- Abstract要約: 語彙, 層, フィードフォワードネットワーク(FFN)プルーニングを組み合わせた, 革新的な統一的構造解析手法であるFlap-Prunerを提案する。
その結果、Flap-Prunerはパラメータの22%をプルーニングした後、元のパフォーマンスの97%を維持し、トレーニング後と同じあるいはそれ以上のパフォーマンスを達成していることがわかった。
- 参考スコア(独自算出の注目度): 27.428983811427827
- License:
- Abstract: The extensive application of Large Language Models (LLMs) in generative coding tasks has raised concerns due to their high computational demands and energy consumption. Unlike previous structural pruning methods designed for classification models that deal with lowdimensional classification logits, generative Code LLMs produce high-dimensional token logit sequences, making traditional pruning objectives inherently limited. Moreover, existing single component pruning approaches further constrain the effectiveness when applied to generative Code LLMs. In response, we propose Flab-Pruner, an innovative unified structural pruning method that combines vocabulary, layer, and Feed-Forward Network (FFN) pruning. This approach effectively reduces model parameters while maintaining performance. Additionally, we introduce a customized code instruction data strategy for coding tasks to enhance the performance recovery efficiency of the pruned model. Through extensive evaluations on three state-of-the-art Code LLMs across multiple generative coding tasks, the results demonstrate that Flab-Pruner retains 97% of the original performance after pruning 22% of the parameters and achieves the same or even better performance after post-training. The pruned models exhibit significant improvements in storage, GPU usage, computational efficiency, and environmental impact, while maintaining well robustness. Our research provides a sustainable solution for green software engineering and promotes the efficient deployment of LLMs in real-world generative coding intelligence applications.
- Abstract(参考訳): 生成的符号化タスクにおけるLarge Language Models (LLM) の広範な適用は、高い計算要求とエネルギー消費のために懸念を提起している。
低次元分類ロジットを扱う分類モデルのために設計された従来の構造的プルーニング法とは異なり、生成コードLLMは高次元トークンロジットシーケンスを生成し、従来のプルーニング目的を本質的に限定している。
さらに、既存の単一コンポーネントのプルーニングアプローチは、生成コードLLMに適用した場合の有効性をさらに制限する。
本研究では, 語彙, 層, フィードフォワードネットワーク(FFN)プルーニングを組み合わせた, 革新的統一的構造解析手法であるFlap-Prunerを提案する。
このアプローチは、パフォーマンスを維持しながら、モデルパラメータを効果的に削減します。
さらに,コーディングタスクのためのカスタマイズされたコード命令データストラテジーを導入し,プルーニングモデルの性能回復効率を向上させる。
複数の生成的コーディングタスクにまたがる3つの最先端のコードLLMの広範な評価を通じて、Flap-Prunerはパラメータの22%を刈り取った後、元のパフォーマンスの97%を保持し、トレーニング後のパフォーマンスも同等あるいはそれ以上に向上することを示した。
プルーンドモデルでは、ストレージ、GPU使用量、計算効率、環境への影響が大幅に改善され、堅牢性を維持している。
我々の研究は、グリーンソフトウェアエンジニアリングのための持続可能なソリューションを提供し、実世界の生成的コーディングインテリジェンスアプリケーションにおけるLLMの効率的なデプロイを促進する。
関連論文リスト
- COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - Code Less, Align More: Efficient LLM Fine-tuning for Code Generation with Data Pruning [4.975728472540823]
各種クラスタリングとプルーニングのメトリクスを統合して、生成されたコードの正確性や機能を損なうことなく、トレーニングデータを選択的に削減する手法を提案する。
実験により,これらのプルーニング戦略は,必要な計算資源を削減するだけでなく,全体的な品質コード生成を向上することが示された。
論文 参考訳(メタデータ) (2024-07-06T10:30:43Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
大規模言語モデル(LLM)デコードでは、与えられたコンテキストに基づいてトークンのシーケンスを生成する。
典型的な自己回帰復号法では、生成されたトークンごとに別の前方通過が必要となる。
微調整を必要とせずにLDMデコーディングを高速化するADEDを導入する。
論文 参考訳(メタデータ) (2024-06-27T22:20:39Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - Enhancing Code Generation Performance of Smaller Models by Distilling the Reasoning Ability of LLMs [36.409470894115074]
我々は、LLMのコード生成推論機能をより小さなモデルに転送することを目的としたCodePLANフレームワークを提案する。
提案手法は,APPSベンチマークにおいて,より小さなモデルのコード生成性能を130%以上向上させる。
論文 参考訳(メタデータ) (2024-03-20T03:09:54Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。