論文の概要: From General to Specific: Tailoring Large Language Models for Personalized Healthcare
- arxiv url: http://arxiv.org/abs/2412.15957v1
- Date: Fri, 20 Dec 2024 14:51:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:24:33.891928
- Title: From General to Specific: Tailoring Large Language Models for Personalized Healthcare
- Title(参考訳): 一般から特定へ:パーソナライズされたヘルスケアのための大規模言語モデルの構築
- Authors: Ruize Shi, Hong Huang, Wei Zhou, Kehan Yin, Kai Zhao, Yun Zhao,
- Abstract要約: パーソナライズされた医療言語モデル(PMLM)を提案する。
PMLMは、個人のニーズに合わせてパーソナライズされたパーソナライズされたプロンプトを設計するための行動や好みの変化をキャプチャする。
実世界の産婦人科データを用いてPMLMを評価し, PMLMがパーソナライズされた応答を達成できることを実験的に実証した。
- 参考スコア(独自算出の注目度): 11.09005130173986
- License:
- Abstract: The rapid development of large language models (LLMs) has transformed many industries, including healthcare. However, previous medical LLMs have largely focused on leveraging general medical knowledge to provide responses, without accounting for patient variability and lacking true personalization at the individual level. To address this, we propose a novel method called personalized medical language model (PMLM), which explores and optimizes personalized LLMs through recommendation systems and reinforcement learning (RL). Specifically, by utilizing self-informed and peer-informed personalization, PMLM captures changes in behaviors and preferences to design initial personalized prompts tailored to individual needs. We further refine these initial personalized prompts through RL, ultimately enhancing the precision of LLM guidance. Notably, the personalized prompt are hard prompt, which grants PMLM high adaptability and reusability, allowing it to directly leverage high-quality proprietary LLMs. We evaluate PMLM using real-world obstetrics and gynecology data, and the experimental results demonstrate that PMLM achieves personalized responses, and it provides more refined and individualized services, offering a potential way for personalized medical LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な発展は、医療を含む多くの産業に変化をもたらした。
しかし,従来の医学 LLM では,患者の多様性を考慮せず,個人レベルでの真のパーソナライゼーションを欠くことなく,一般の医学的知識の活用に重点を置いてきた。
そこで本研究では,レコメンデーションシステムと強化学習(RL)を通じて,パーソナライズされたLLMを探索し,最適化する,パーソナライズドメディカル言語モデル(PMLM)と呼ばれる新しい手法を提案する。
具体的には、自己インフォームドとピアインフォームドのパーソナライズを利用して、PMLMは個人のニーズに合わせてパーソナライズされたパーソナライズされたプロンプトを設計するための行動や好みの変化をキャプチャする。
我々は、これらの初期パーソナライズされたプロンプトをRLにより洗練し、最終的にLLMガイダンスの精度を向上する。
特に、パーソナライズされたプロンプトはハードプロンプトであり、PMLMに高い適応性と再利用性を与え、高品質のプロプライエタリなLLMを直接活用することができる。
実世界の産婦人科および産婦人科データを用いてPMLMを評価し, PMLMがパーソナライズされた応答を達成し, より洗練され, 個別化されたサービスを提供し, パーソナライズされた医療用LDMの潜在的方法を提供することを示した。
関連論文リスト
- Personalization of Large Language Models: A Survey [131.00650432814268]
大規模言語モデル(LLM)のパーソナライゼーションは、最近、広範囲のアプリケーションでますます重要になっている。
パーソナライズ LLM に関する既存の研究の多くは、(a)パーソナライズされたテキスト生成、または(b)レコメンデーションシステムのようなパーソナライズに関連する下流アプリケーションに LLM を活用することに集中している。
パーソナライズされたLSM使用のための分類を導入し、主要な違いと課題を要約する。
論文 参考訳(メタデータ) (2024-10-29T04:01:11Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - Few-shot Personalization of LLMs with Mis-aligned Responses [40.0349773257245]
本稿では,大規模言語モデル(LLM)のパーソナライズのための新しいアプローチを提案する。
私たちのキーとなるアイデアは、LSMを用いてプロンプトを段階的に改善することで、各ユーザに対してパーソナライズされたプロンプトのセットを学ぶことです。
即時改善の反復過程において,LLMによる不整合応答の文脈を取り入れた。
論文 参考訳(メタデータ) (2024-06-26T18:29:12Z) - A Survey on Large Language Models from General Purpose to Medical Applications: Datasets, Methodologies, and Evaluations [5.265452667976959]
本調査は,オープンソース汎用LSMをベースとした医療用LSMのトレーニング方法を体系的にまとめたものである。
a) トレーニングコーパスの取得方法、カスタマイズされた医療トレーニングセットの構築方法、(b) 適切なトレーニングパラダイムの選択方法、(d) 既存の課題と有望な研究方向性をカバーしている。
論文 参考訳(メタデータ) (2024-06-14T02:42:20Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - From Beginner to Expert: Modeling Medical Knowledge into General LLMs [22.475129648458136]
大規模言語モデル(LLM)に基づく人工知能(AI)システムは、自然言語の理解と生成において顕著な能力を示した。
これらのモデルは、医学的な知識を推論したり、医師のような方法で医学的な疑問に答えたりするといった、繊細な応用に関して重要な課題に直面している。
本研究は、事前訓練された一般LLMモデル(AntGLM-10B)から始まり、医療初心者から医療専門家(AntGLM-Med-10B)に微調整する。
論文 参考訳(メタデータ) (2023-12-02T05:54:06Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
我々は中国医学領域向けに明示的に設計されたベンチマークLSMであるChiMed-GPTを提案する。
ChiMed-GPTは、事前訓練、SFT、RLHFを含む総合的な訓練体制を実施。
我々は,ChiMed-GPTを患者識別に関する態度尺度の実行を促すことによって,潜在的なバイアスを分析した。
論文 参考訳(メタデータ) (2023-11-10T12:25:32Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
大規模言語モデル (LLM) は、人間の言語を理解し、生成する能力のために大きな注目を集めている。
本総説は,医学におけるLSMの開発と展開について概説することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T02:55:58Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。