LEDA: Log-Euclidean Diffeomorphic Autoencoder for Efficient Statistical Analysis of Diffeomorphism
- URL: http://arxiv.org/abs/2412.16129v1
- Date: Fri, 20 Dec 2024 18:26:10 GMT
- Title: LEDA: Log-Euclidean Diffeomorphic Autoencoder for Efficient Statistical Analysis of Diffeomorphism
- Authors: Krithika Iyer, Shireen Elhabian, Sarang Joshi,
- Abstract summary: Invertible deformable registration is essential for tracking anatomical variations.
Traditional approaches for analyzing deformation fields are computationally expensive and prone to numerical errors.
We introduce a loss function to enforce inverse consistency, ensuring accurate latent representations of deformation fields.
- Score: 0.029792392019703937
- License:
- Abstract: Image registration is a core task in computational anatomy that establishes correspondences between images. Invertible deformable registration, which computes a deformation field and handles complex, non-linear transformation, is essential for tracking anatomical variations, especially in neuroimaging applications where inter-subject differences and longitudinal changes are key. Analyzing the deformation fields is challenging due to their non-linearity, limiting statistical analysis. However, traditional approaches for analyzing deformation fields are computationally expensive, sensitive to initialization, and prone to numerical errors, especially when the deformation is far from the identity. To address these limitations, we propose the Log-Euclidean Diffeomorphic Autoencoder (LEDA), an innovative framework designed to compute the principal logarithm of deformation fields by efficiently predicting consecutive square roots. LEDA operates within a linearized latent space that adheres to the diffeomorphisms group action laws, enhancing our model's robustness and applicability. We also introduce a loss function to enforce inverse consistency, ensuring accurate latent representations of deformation fields. Extensive experiments with the OASIS-1 dataset demonstrate the effectiveness of LEDA in accurately modeling and analyzing complex non-linear deformations while maintaining inverse consistency. Additionally, we evaluate its ability to capture and incorporate clinical variables, enhancing its relevance for clinical applications.
Related papers
- MORPH-LER: Log-Euclidean Regularization for Population-Aware Image Registration [0.027271717351505978]
We introduce MORPH-LER, a Log-Euclidean regularization framework for population-aware unsupervised image registration.
MORPH-LER learns population morphometrics from spatial transformations to guide and regularize registration networks.
arXiv Detail & Related papers (2025-02-04T05:39:13Z) - No Equations Needed: Learning System Dynamics Without Relying on Closed-Form ODEs [56.78271181959529]
This paper proposes a conceptual shift to modeling low-dimensional dynamical systems by departing from the traditional two-step modeling process.
Instead of first discovering a closed-form equation and then analyzing it, our approach, direct semantic modeling, predicts the semantic representation of the dynamical system.
Our approach not only simplifies the modeling pipeline but also enhances the transparency and flexibility of the resulting models.
arXiv Detail & Related papers (2025-01-30T18:36:48Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - InVAErt networks for amortized inference and identifiability analysis of lumped parameter hemodynamic models [0.0]
In this study, we use inVAErt networks, a neural network-based, data-driven framework for enhanced digital twin analysis of stiff dynamical systems.
We demonstrate the flexibility and effectiveness of inVAErt networks in the context of physiological inversion of a six-compartment lumped parameter hemodynamic model from synthetic data to real data with missing components.
arXiv Detail & Related papers (2024-08-15T17:07:40Z) - Hybrid data-driven and physics-informed regularized learning of cyclic
plasticity with Neural Networks [0.0]
The proposed model architecture is simpler and more efficient compared to existing solutions from the literature.
The validation of the approach is carried out by means of surrogate data obtained with the Armstrong-Frederick kinematic hardening model.
arXiv Detail & Related papers (2024-03-04T07:09:54Z) - Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model
Reduction for Operator Learning [12.124206935054389]
In this paper, we utilize low-dimensional nonlinear structures in model reduction by investigating Auto-Encoder-based Neural Network (AENet)
Our numerical experiments validate the ability of AENet to accurately learn the solution operator of nonlinear partial differential equations.
Our theoretical framework shows that the sample complexity of training AENet is intricately tied to the intrinsic dimension of the modeled process.
arXiv Detail & Related papers (2024-01-19T05:01:43Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - RDA-INR: Riemannian Diffeomorphic Autoencoding via Implicit Neural Representations [3.9858496473361402]
In this work, we focus on a limitation of neural network-based atlas building and statistical latent modeling methods.
We overcome this limitation by designing a novel encoder based on resolution-independent implicit neural representations.
arXiv Detail & Related papers (2023-05-22T09:27:17Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
This paper studies the causal representation learning problem when latent causal variables are observed indirectly.
The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables.
arXiv Detail & Related papers (2023-01-19T18:39:48Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
We introduce the Topographic VAE: a novel method for efficiently training deep generative models with topographically organized latent variables.
We show that such a model indeed learns to organize its activations according to salient characteristics such as digit class, width, and style on MNIST.
We demonstrate approximate equivariance to complex transformations, expanding upon the capabilities of existing group equivariant neural networks.
arXiv Detail & Related papers (2021-09-03T09:25:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.