Effect Decomposition of Functional-Output Computer Experiments via Orthogonal Additive Gaussian Processes
- URL: http://arxiv.org/abs/2506.12701v1
- Date: Sun, 15 Jun 2025 03:24:55 GMT
- Title: Effect Decomposition of Functional-Output Computer Experiments via Orthogonal Additive Gaussian Processes
- Authors: Yu Tan, Yongxiang Li, Xiaowu Dai, Kwok-Leung Tsui,
- Abstract summary: Functional ANOVA (FANOVA) is a widely used variance-based sensitivity analysis tool.<n>This study proposes a functional-output orthogonal additive Gaussian process (FOAGP) to efficiently perform the data-driven orthogonal effect decomposition.<n>The FOAGP framework also provides analytical formulations for local Sobol' indices and expected conditional variance sensitivity indices.
- Score: 8.723426955657347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional ANOVA (FANOVA) is a widely used variance-based sensitivity analysis tool. However, studies on functional-output FANOVA remain relatively scarce, especially for black-box computer experiments, which often involve complex and nonlinear functional-output relationships with unknown data distribution. Conventional approaches often rely on predefined basis functions or parametric structures that lack the flexibility to capture complex nonlinear relationships. Additionally, strong assumptions about the underlying data distributions further limit their ability to achieve a data-driven orthogonal effect decomposition. To address these challenges, this study proposes a functional-output orthogonal additive Gaussian process (FOAGP) to efficiently perform the data-driven orthogonal effect decomposition. By enforcing a conditional orthogonality constraint on the separable prior process, the proposed functional-output orthogonal additive kernel enables data-driven orthogonality without requiring prior distributional assumptions. The FOAGP framework also provides analytical formulations for local Sobol' indices and expected conditional variance sensitivity indices, enabling comprehensive sensitivity analysis by capturing both global and local effect significance. Validation through two simulation studies and a real case study on fuselage shape control confirms the model's effectiveness in orthogonal effect decomposition and variance decomposition, demonstrating its practical value in engineering applications.
Related papers
- Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Bayesian Kernel Regression for Functional Data [1.4501446815590895]
In supervised learning, the output variable to be predicted is often represented as a function.<n>We propose a novel functional output regression model based on kernel methods.
arXiv Detail & Related papers (2025-03-17T19:28:27Z) - Assumption-Lean Post-Integrated Inference with Negative Control Outcomes [0.0]
We introduce a robust post-integrated inference (PII) method that adjusts for latent heterogeneity using negative control outcomes.
Our method extends to projected direct effect estimands, accounting for hidden mediators, confounders, and moderators.
The proposed doubly robust estimators are consistent and efficient under minimal assumptions and potential misspecification.
arXiv Detail & Related papers (2024-10-07T12:52:38Z) - Functional Linear Non-Gaussian Acyclic Model for Causal Discovery [7.303542369216906]
We develop a framework to identify causal relationships in brain-effective connectivity tasks involving fMRI and EEG datasets.
We establish theoretical guarantees of the identifiability of the causal relationship among non-Gaussian random vectors and even random functions in infinite-dimensional Hilbert spaces.
For real data, we focus on analyzing the brain connectivity patterns derived from fMRI data.
arXiv Detail & Related papers (2024-01-17T23:27:48Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
In the anisotropic setting, the commonly used spherical gradient dynamics may fail to recover the true direction.
We show that appropriate weight normalization that is reminiscent of batch normalization can alleviate this issue.
In particular, under the spiked model with a suitably large spike, the sample complexity of gradient-based training can be made independent of the information exponent.
arXiv Detail & Related papers (2023-09-07T16:55:50Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.<n>This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.<n>We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Data-Driven Influence Functions for Optimization-Based Causal Inference [105.5385525290466]
We study a constructive algorithm that approximates Gateaux derivatives for statistical functionals by finite differencing.
We study the case where probability distributions are not known a priori but need to be estimated from data.
arXiv Detail & Related papers (2022-08-29T16:16:22Z) - coVariance Neural Networks [119.45320143101381]
Graph neural networks (GNN) are an effective framework that exploit inter-relationships within graph-structured data for learning.
We propose a GNN architecture, called coVariance neural network (VNN), that operates on sample covariance matrices as graphs.
We show that VNN performance is indeed more stable than PCA-based statistical approaches.
arXiv Detail & Related papers (2022-05-31T15:04:43Z) - Efficient Multidimensional Functional Data Analysis Using Marginal
Product Basis Systems [2.4554686192257424]
We propose a framework for learning continuous representations from a sample of multidimensional functional data.
We show that the resulting estimation problem can be solved efficiently by the tensor decomposition.
We conclude with a real data application in neuroimaging.
arXiv Detail & Related papers (2021-07-30T16:02:15Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
We propose an efficient and scalable semi-implicit extrapolational (SIVI)
Our method maps SIVI's evidence to a rigorous inference of lower gradient values.
arXiv Detail & Related papers (2021-01-15T11:39:09Z) - Learning Inconsistent Preferences with Gaussian Processes [14.64963271587818]
We revisit widely used preferential Gaussian processes by Chu et al.(2005) and challenge their modelling assumption that imposes rankability of data items via latent utility function values.
We propose a generalisation of pgp which can capture more expressive latent preferential structures in the data.
Our experimental findings support the conjecture that violations of rankability are ubiquitous in real-world preferential data.
arXiv Detail & Related papers (2020-06-06T11:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.