Decoding fairness: a reinforcement learning perspective
- URL: http://arxiv.org/abs/2412.16249v1
- Date: Fri, 20 Dec 2024 01:29:49 GMT
- Title: Decoding fairness: a reinforcement learning perspective
- Authors: Guozhong Zheng, Jiqiang Zhang, Xin Ou, Shengfeng Deng, Li Chen,
- Abstract summary: We apply Q-learning to the ultimatum game (UG), where each player is assigned two Q-tables to guide decisions for the roles of proposer and responder.
In a two-player scenario, fairness emerges prominently when both experiences and future rewards are appreciated.
Our mechanism analysis reveals that the system undergoes two phases, eventually stabilizing into fair or rational strategies.
- Score: 6.0413802011767705
- License:
- Abstract: Behavioral experiments on the ultimatum game (UG) reveal that we humans prefer fair acts, which contradicts the prediction made in orthodox Economics. Existing explanations, however, are mostly attributed to exogenous factors within the imitation learning framework. Here, we adopt the reinforcement learning paradigm, where individuals make their moves aiming to maximize their accumulated rewards. Specifically, we apply Q-learning to UG, where each player is assigned two Q-tables to guide decisions for the roles of proposer and responder. In a two-player scenario, fairness emerges prominently when both experiences and future rewards are appreciated. In particular, the probability of successful deals increases with higher offers, which aligns with observations in behavioral experiments. Our mechanism analysis reveals that the system undergoes two phases, eventually stabilizing into fair or rational strategies. These results are robust when the rotating role assignment is replaced by a random or fixed manner, or the scenario is extended to a latticed population. Our findings thus conclude that the endogenous factor is sufficient to explain the emergence of fairness, exogenous factors are not needed.
Related papers
- Learning under Imitative Strategic Behavior with Unforeseeable Outcomes [14.80947863438795]
We propose a Stackelberg game to model the interplay between individuals and the decision-maker.
We show that the objective difference between the two can be decomposed into three interpretable terms.
arXiv Detail & Related papers (2024-05-03T00:53:58Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
In reinforcement learning problems, agents must consider long-term fairness while maximizing returns.
Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear.
We introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics.
arXiv Detail & Related papers (2024-04-16T22:47:59Z) - Decoding trust: A reinforcement learning perspective [11.04265850036115]
Behavioral experiments on the trust game have shown that trust and trustworthiness are universal among human beings.
We turn to the paradigm of reinforcement learning, where individuals update their strategies by evaluating the long-term return through accumulated experience.
In the pairwise scenario, we reveal that high levels of trust and trustworthiness emerge when individuals appreciate both their historical experience and returns in the future.
arXiv Detail & Related papers (2023-09-26T01:06:29Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Nested Counterfactual Identification from Arbitrary Surrogate
Experiments [95.48089725859298]
We study the identification of nested counterfactuals from an arbitrary combination of observations and experiments.
Specifically, we prove the counterfactual unnesting theorem (CUT), which allows one to map arbitrary nested counterfactuals to unnested ones.
arXiv Detail & Related papers (2021-07-07T12:51:04Z) - Learning "What-if" Explanations for Sequential Decision-Making [92.8311073739295]
Building interpretable parameterizations of real-world decision-making on the basis of demonstrated behavior is essential.
We propose learning explanations of expert decisions by modeling their reward function in terms of preferences with respect to "what if" outcomes.
We highlight the effectiveness of our batch, counterfactual inverse reinforcement learning approach in recovering accurate and interpretable descriptions of behavior.
arXiv Detail & Related papers (2020-07-02T14:24:17Z) - Multi-Issue Bargaining With Deep Reinforcement Learning [0.0]
This paper evaluates the use of deep reinforcement learning in bargaining games.
Two actor-critic networks were trained for the bidding and acceptance strategy.
Neural agents learn to exploit time-based agents, achieving clear transitions in decision preference values.
They also demonstrate adaptive behavior against different combinations of concession, discount factors, and behavior-based strategies.
arXiv Detail & Related papers (2020-02-18T18:33:46Z) - Intrinsic Motivation for Encouraging Synergistic Behavior [55.10275467562764]
We study the role of intrinsic motivation as an exploration bias for reinforcement learning in sparse-reward synergistic tasks.
Our key idea is that a good guiding principle for intrinsic motivation in synergistic tasks is to take actions which affect the world in ways that would not be achieved if the agents were acting on their own.
arXiv Detail & Related papers (2020-02-12T19:34:51Z) - Weakly-Supervised Disentanglement Without Compromises [53.55580957483103]
Intelligent agents should be able to learn useful representations by observing changes in their environment.
We model such observations as pairs of non-i.i.d. images sharing at least one of the underlying factors of variation.
We show that only knowing how many factors have changed, but not which ones, is sufficient to learn disentangled representations.
arXiv Detail & Related papers (2020-02-07T16:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.