論文の概要: Interactive Scene Authoring with Specialized Generative Primitives
- arxiv url: http://arxiv.org/abs/2412.16253v1
- Date: Fri, 20 Dec 2024 04:39:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:56:42.620837
- Title: Interactive Scene Authoring with Specialized Generative Primitives
- Title(参考訳): 特別生成的プリミティブを用いたインタラクティブなシーンオーサリング
- Authors: Clément Jambon, Changwoon Choi, Dongsu Zhang, Olga Sorkine-Hornung, Young Min Kim,
- Abstract要約: Specialized Generative Primitivesは、熟練していないユーザーが高品質な3Dシーンを作成できる生成フレームワークである。
各プリミティブは、実世界から1つの例の分布をキャプチャする効率的な生成モデルである。
実世界のシーンから様々なプリミティブを抽出し、3Dアセットやシーンを数分で作成できるように制御するインタラクティブセッションを紹介する。
- 参考スコア(独自算出の注目度): 25.378818867764323
- License:
- Abstract: Generating high-quality 3D digital assets often requires expert knowledge of complex design tools. We introduce Specialized Generative Primitives, a generative framework that allows non-expert users to author high-quality 3D scenes in a seamless, lightweight, and controllable manner. Each primitive is an efficient generative model that captures the distribution of a single exemplar from the real world. With our framework, users capture a video of an environment, which we turn into a high-quality and explicit appearance model thanks to 3D Gaussian Splatting. Users then select regions of interest guided by semantically-aware features. To create a generative primitive, we adapt Generative Cellular Automata to single-exemplar training and controllable generation. We decouple the generative task from the appearance model by operating on sparse voxels and we recover a high-quality output with a subsequent sparse patch consistency step. Each primitive can be trained within 10 minutes and used to author new scenes interactively in a fully compositional manner. We showcase interactive sessions where various primitives are extracted from real-world scenes and controlled to create 3D assets and scenes in a few minutes. We also demonstrate additional capabilities of our primitives: handling various 3D representations to control generation, transferring appearances, and editing geometries.
- Abstract(参考訳): 高品質な3Dデジタルアセットを生成するには、複雑な設計ツールに関する専門家の知識が必要となることが多い。
非熟練のユーザがシームレスで軽量で制御可能な方法で高品質な3Dシーンを作成できる生成フレームワークである、特殊化生成プリミティブを紹介する。
各プリミティブは、実世界から1つの例の分布をキャプチャする効率的な生成モデルである。
当社のフレームワークでは,ユーザは環境のビデオをキャプチャして,3Dガウス・スプラッティングによる高品質で明示的な外観モデルに変換する。
次にユーザは、セマンティックな機能によってガイドされる関心のある領域を選択する。
生成的プリミティブを作成するために,生成セルオートマタを単一経験的学習と制御可能な生成に適用する。
生成タスクをスパースボクセルで操作することで外観モデルから切り離し、その後、スパースパッチ整合性ステップで高品質な出力を回復する。
各プリミティブは10分以内にトレーニングでき、完全に構成的な方法でインタラクティブに新しいシーンを作成できる。
実世界のシーンから様々なプリミティブを抽出し、3Dアセットやシーンを数分で作成できるように制御するインタラクティブセッションを紹介する。
また、プリミティブのさらなる機能として、様々な3D表現を扱い、生成、外観の転送、ジオメトリの編集を行う。
関連論文リスト
- StdGEN: Semantic-Decomposed 3D Character Generation from Single Images [28.302030751098354]
StdGENは、単一の画像から意味的に高品質な3D文字を生成する革新的なパイプラインである。
3分で体、衣服、毛髪などの分離した意味成分を持つ複雑な3D文字を生成する。
StdGENは、使えるセマンティック分解された3D文字を提供し、幅広いアプリケーションに対して柔軟なカスタマイズを可能にする。
論文 参考訳(メタデータ) (2024-11-08T17:54:18Z) - Flex3D: Feed-Forward 3D Generation With Flexible Reconstruction Model And Input View Curation [61.040832373015014]
テキスト, 単一画像, スパース画像から高品質な3Dコンテンツを生成するための新しいフレームワークFlex3Dを提案する。
我々は、微調整された多視点画像拡散モデルとビデオ拡散モデルを用いて、候補視のプールを生成し、ターゲット3Dオブジェクトのリッチな表現を可能にする。
第2段階では、キュレートされたビューは、任意の数の入力を効果的に処理できるトランスフォーマーアーキテクチャ上に構築されたフレキシブルリコンストラクションモデル(FlexRM)に入力されます。
論文 参考訳(メタデータ) (2024-10-01T17:29:43Z) - ViewCrafter: Taming Video Diffusion Models for High-fidelity Novel View Synthesis [63.169364481672915]
単一またはスパース画像からジェネリックシーンの高忠実な新規ビューを合成する新しい方法である textbfViewCrafter を提案する。
提案手法は,映像拡散モデルの強力な生成能力と,ポイントベース表現によって提供される粗い3D手がかりを利用して高品質な映像フレームを生成する。
論文 参考訳(メタデータ) (2024-09-03T16:53:19Z) - CLAY: A Controllable Large-scale Generative Model for Creating High-quality 3D Assets [43.315487682462845]
CLAYは、人間の想像力を複雑な3Dデジタル構造に変換するために設計された3D幾何学および材料生成装置である。
中心となるのは、多解像度変分オートエンコーダ(VAE)と最小遅延拡散変換器(DiT)からなる大規模生成モデルである。
我々はCLAYを、スケッチ的な概念設計から複雑な詳細を持つ生産可能な資産まで、様々な制御可能な3Dアセット作成に活用することを実証する。
論文 参考訳(メタデータ) (2024-05-30T05:57:36Z) - InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models [66.83681825842135]
InstantMeshは、単一のイメージからインスタント3Dメッシュを生成するためのフィードフォワードフレームワークである。
最新世代の品質とトレーニングのスケーラビリティが特徴だ。
InstantMeshのコード、重み、デモをすべてリリースし、3D生成AIのコミュニティに多大な貢献ができることを意図しています。
論文 参考訳(メタデータ) (2024-04-10T17:48:37Z) - CharacterGen: Efficient 3D Character Generation from Single Images with Multi-View Pose Canonicalization [27.55341255800119]
本稿では,3Dキャラクタを効率的に生成するフレームワークである characterGen を提案する。
変換器ベースで一般化可能なスパースビュー再構成モデルが,我々のアプローチの他のコアコンポーネントである。
複数のポーズやビューでレンダリングされたアニメキャラクタのデータセットをキュレートして,モデルをトレーニングし,評価した。
論文 参考訳(メタデータ) (2024-02-27T05:10:59Z) - Patch-based 3D Natural Scene Generation from a Single Example [35.37200601332951]
典型的にはユニークで複雑な自然シーンの3次元生成モデルを対象としている。
従来のパッチベースのイメージモデルに触発されて,パッチレベルでの3Dシーンの合成を提唱する。
論文 参考訳(メタデータ) (2023-04-25T09:19:11Z) - NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion
Models [85.20004959780132]
複雑な3D環境を合成できる生成モデルであるNeuralField-LDMを紹介する。
NeuralField-LDMは,条件付きシーン生成,シーンインペインティング,シーンスタイル操作など,さまざまな3Dコンテンツ作成アプリケーションに利用できることを示す。
論文 参考訳(メタデータ) (2023-04-19T16:13:21Z) - SDFusion: Multimodal 3D Shape Completion, Reconstruction, and Generation [89.47132156950194]
本稿では,アマチュアユーザのための3Dアセット生成を簡易化する新しいフレームワークを提案する。
提案手法は,人間によって容易に提供可能な様々な入力モダリティをサポートする。
私たちのモデルは、これらのタスクをひとつのSwiss-army-knifeツールにまとめることができます。
論文 参考訳(メタデータ) (2022-12-08T18:59:05Z) - 3D-Aware Video Generation [149.5230191060692]
本研究では, 3D 対応ビデオの生成を学習する 4 次元生成敵ネットワーク (GAN) について検討する。
神経暗黙表現と時間認識判別器を組み合わせることで,モノクラービデオのみを教師する3D映像を合成するGANフレームワークを開発した。
論文 参考訳(メタデータ) (2022-06-29T17:56:03Z) - Video-driven Neural Physically-based Facial Asset for Production [33.24654834163312]
高品質な物理的資産を持つ動的顔のジオメトリを生成するための,学習に基づく新しいビデオ駆動型アプローチを提案する。
本手法は,従来の映像駆動型顔再構成法やアニメーション法よりも精度が高く,視覚的忠実度が高い。
論文 参考訳(メタデータ) (2022-02-11T13:22:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。