論文の概要: Revisiting MLLMs: An In-Depth Analysis of Image Classification Abilities
- arxiv url: http://arxiv.org/abs/2412.16418v1
- Date: Sat, 21 Dec 2024 00:46:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:53.466321
- Title: Revisiting MLLMs: An In-Depth Analysis of Image Classification Abilities
- Title(参考訳): MLLMの再検討:画像分類能力の詳細な分析
- Authors: Huan Liu, Lingyu Xiao, Jiangjiang Liu, Xiaofan Li, Ze Feng, Sen Yang, Jingdong Wang,
- Abstract要約: 本稿では、画像分類の詳細な分析により、MLLM(Multimodal Large Language Models)を徹底的に再検討する。
この結果から,最新のMLLMは,複数のデータセット上でCLIPスタイルの視覚言語モデルに適合し,さらに優れることがわかった。
- 参考スコア(独自算出の注目度): 31.293869275511412
- License:
- Abstract: With the rapid advancement of Multimodal Large Language Models (MLLMs), a variety of benchmarks have been introduced to evaluate their capabilities. While most evaluations have focused on complex tasks such as scientific comprehension and visual reasoning, little attention has been given to assessing their fundamental image classification abilities. In this paper, we address this gap by thoroughly revisiting the MLLMs with an in-depth analysis of image classification. Specifically, building on established datasets, we examine a broad spectrum of scenarios, from general classification tasks (e.g., ImageNet, ObjectNet) to more fine-grained categories such as bird and food classification. Our findings reveal that the most recent MLLMs can match or even outperform CLIP-style vision-language models on several datasets, challenging the previous assumption that MLLMs are bad at image classification \cite{VLMClassifier}. To understand the factors driving this improvement, we conduct an in-depth analysis of the network architecture, data selection, and training recipe used in public MLLMs. Our results attribute this success to advancements in language models and the diversity of training data sources. Based on these observations, we further analyze and attribute the potential reasons to conceptual knowledge transfer and enhanced exposure of target concepts, respectively. We hope our findings will offer valuable insights for future research on MLLMs and their evaluation in image classification tasks.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の急速な進歩により、その能力を評価するために様々なベンチマークが導入されている。
ほとんどの評価は、科学的理解や視覚的推論のような複雑なタスクに焦点を当てているが、その基本的な画像分類能力を評価することにはほとんど注意が払われていない。
本稿では,画像分類の詳細な解析を行い,MLLMを徹底的に再検討することで,このギャップに対処する。
具体的には、確立されたデータセットに基づいて、一般的な分類タスク(例えば、ImageNet、ObjectNet)から、鳥や食物の分類のようなよりきめ細かいカテゴリまで、幅広いシナリオについて検討する。
以上の結果から,最新のMLLMは複数のデータセット上でCLIPスタイルの視覚言語モデルに適合し,さらに優れる可能性が示唆された。
この改善を導く要因を理解するため,公共MLLMにおけるネットワークアーキテクチャ,データ選択,トレーニングレシピの詳細な分析を行う。
この成功は、言語モデルの発展とトレーニングデータソースの多様性に起因する。
本研究は,これらの知見に基づいて,概念的知識伝達と目標概念の露出の増大に対する潜在的な理由を分析・評価する。
我々は,MLLMの今後の研究や画像分類タスクにおける評価に貴重な知見を得られることを願っている。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - Visualization Literacy of Multimodal Large Language Models: A Comparative Study [12.367399155606162]
MLLM(Multimodal large language model)は、MLLM(Multimodal large language model)とLLM(LLM)の固有の能力を組み合わせて、マルチモーダルコンテキストを推論する。
ビジュアライゼーションにおける最近の多くの研究は、可視化結果を理解し、解釈し、自然言語のユーザに対して視覚化の内容を説明するMLLMの能力を実証している。
本研究では,可視化リテラシーの概念を利用してMLLMを評価することにより,そのギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-06-24T17:52:16Z) - Why are Visually-Grounded Language Models Bad at Image Classification? [39.76294811955341]
GPT-4VやLLaVAといった視覚的言語モデル(VLM)を用いて画像分類タスクを再検討する。
既存のプロプライエタリかつパブリックなVLMは、ImageNetのような標準画像分類ベンチマークにおいてCLIPを著しく上回っていることがわかった。
画像分類のための重要な情報は、VLMの潜在空間に符号化されるが、十分なトレーニングデータで効果的に復号化できる。
論文 参考訳(メタデータ) (2024-05-28T17:57:06Z) - RAR: Retrieving And Ranking Augmented MLLMs for Visual Recognition [78.97487780589574]
MLLM(Multimodal Large Language Models)は、細粒度カテゴリの分類において優れている。
本稿では,MLLMの検索とランク付けのための拡張手法を提案する。
提案手法は, 微粒化認識における固有の限界に対処するだけでなく, モデルの包括的知識基盤も維持する。
論文 参考訳(メタデータ) (2024-03-20T17:59:55Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
VLM(Vision-Language Models)は、画像キャプションや視覚的質問応答といった複雑なタスクに対処できる高度なモデルである。
我々の分類では、VLMを視覚言語理解専用のモデル、マルチモーダル入力を処理するモデル、マルチモーダル入力とアウトプットの両方を受け付け、生成するモデルという3つのカテゴリに分類する。
我々は各モデルを慎重に識別し、基礎となるアーキテクチャ、データソースのトレーニング、および可能な限りの強度と限界を広範囲に分析する。
論文 参考訳(メタデータ) (2024-02-20T18:57:34Z) - Q-Bench+: A Benchmark for Multi-modal Foundation Models on Low-level Vision from Single Images to Pairs [71.07108539262721]
低レベルの視覚に関連する人間の言語応答をエミュレートするためのベンチマーク設定を設計する。
我々は,MLLMの低レベルの認識関連質問応答と記述評価を,単一画像から画像ペアへ拡張する。
複数のMLLMが単一の画像に対して十分な低レベルの視覚能力を持つことを示したが、GPT-4Vのみが人間よりも高い精度で比較できる。
論文 参考訳(メタデータ) (2024-02-11T06:44:11Z) - Mementos: A Comprehensive Benchmark for Multimodal Large Language Model
Reasoning over Image Sequences [80.54979242912944]
本稿では,MLLMの逐次画像推論能力を評価するためのベンチマークであるMementosを紹介する。
MLLMは与えられた画像列の動的情報を正確に記述するのに苦労しており、しばしば幻覚/誤表現につながる。
論文 参考訳(メタデータ) (2024-01-19T07:10:13Z) - CLAMP: Contrastive LAnguage Model Prompt-tuning [89.96914454453791]
このように適応すれば,大規模な言語モデルでも優れた画像分類性能が得られることを示す。
我々のアプローチは最先端のmLLMを13%上回り、カスタムテキストモデルによる対照的な学習をわずかに上回ります。
論文 参考訳(メタデータ) (2023-12-04T05:13:59Z) - Q-Bench: A Benchmark for General-Purpose Foundation Models on Low-level
Vision [85.6008224440157]
MLLM(Multi-modality Large Language Models)は、コンピュータビジョンの特殊モデルから汎用基礎モデルへのシフトを触媒している。
Q-Benchは3つの領域(低レベル視覚知覚、低レベル視覚記述、全体視品質評価)でMLLMの潜在能力を評価するための総合的なベンチマークである。
論文 参考訳(メタデータ) (2023-09-25T14:43:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。