Higher-Order Krylov State Complexity in Random Matrix Quenches
- URL: http://arxiv.org/abs/2412.16472v1
- Date: Sat, 21 Dec 2024 03:59:30 GMT
- Title: Higher-Order Krylov State Complexity in Random Matrix Quenches
- Authors: Hugo A. Camargo, Yichao Fu, Viktor Jahnke, Keun-Young Kim, Kuntal Pal,
- Abstract summary: In quantum many-body systems, time-evolved states typically remain confined to a smaller region of the Hilbert space known as the $textitKrylov subspace$.<n>We investigate the time evolution of generalized spread complexities following a quantum quench in random matrix theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum many-body systems, time-evolved states typically remain confined to a smaller region of the Hilbert space known as the $\textit{Krylov subspace}$. The time evolution can be mapped onto a one-dimensional problem of a particle moving on a chain, where the average position $\langle n \rangle$ defines Krylov state complexity or spread complexity. Generalized spread complexities, associated with higher-order moments $\langle n^p \rangle$ for $p>1$, provide finer insights into the dynamics. We investigate the time evolution of generalized spread complexities following a quantum quench in random matrix theory. The quench is implemented by transitioning from an initial random Hamiltonian to a post-quench Hamiltonian obtained by dividing it into four blocks and flipping the sign of the off-diagonal blocks. This setup captures universal features of chaotic quantum quenches. When the initial state is the thermofield double state of the post-quench Hamiltonian, a peak in spread complexity preceding equilibration signals level repulsion, a hallmark of quantum chaos. We examine the robustness of this peak for other initial states, such as the ground state or the thermofield double state of the pre-quench Hamiltonian. To quantify this behavior, we introduce a measure based on the peak height relative to the late-time saturation value. In the continuous limit, higher-order complexities show increased sensitivity to the peak, supported by numerical simulations for finite-size random matrices.
Related papers
- Dynamics of Pseudoentanglement [0.03320194947871346]
dynamics of quantum entanglement plays a central role in explaining the emergence of thermal equilibrium in isolated many-body systems.
Recent works have introduced a notion of pseudoentanglement describing ensembles of many-body states.
This prompts the question: how much entanglement is truly necessary to achieve thermal equilibrium in quantum systems?
arXiv Detail & Related papers (2024-03-14T17:54:27Z) - Quantum state complexity meets many-body scars [0.0]
Scar eigenstates in a many-body system refer to a small subset of non-thermal finite energy density eigenstates embedded into an otherwise thermal spectrum.
We probe these small sets of special eigenstates starting from particular initial states by computing the spread complexity associated to time evolution of the PXP hamiltonian.
arXiv Detail & Related papers (2023-05-16T18:10:46Z) - Average entanglement entropy of midspectrum eigenstates of
quantum-chaotic interacting Hamiltonians [0.0]
We show that the magnitude of the negative $O(1)$ correction is only slightly greater than the one predicted for random pure states.
We derive a simple expression that describes the numerically observed $nu$ dependence of the $O(1)$ deviation from the prediction for random pure states.
arXiv Detail & Related papers (2023-03-23T18:00:02Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Geometric relative entropies and barycentric Rényi divergences [16.385815610837167]
monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
We show that monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
arXiv Detail & Related papers (2022-07-28T17:58:59Z) - Quantum chaos and the complexity of spread of states [0.0]
We propose a measure of quantum state complexity defined by minimizing the spread of the wave-function over all choices of basis.
Our measure is controlled by the "survival amplitude" for a state to remain unchanged, and can be efficiently computed in theories with discrete spectra.
arXiv Detail & Related papers (2022-02-14T19:00:00Z) - Entropy decay for Davies semigroups of a one dimensional quantum lattice [13.349045680843885]
We show that the relative entropy between any evolved state and the equilibrium Gibbs state contracts exponentially fast with an exponent that scales logarithmically with the length of the chain.
This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems.
arXiv Detail & Related papers (2021-12-01T16:15:58Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - Complete entropic inequalities for quantum Markov chains [17.21921346541951]
We prove that every GNS-symmetric quantum Markov semigroup on a finite dimensional algebra satisfies a modified log-Sobolev inequality.
We also establish the first general approximateization property of relative entropy.
arXiv Detail & Related papers (2021-02-08T11:47:37Z) - Topological lower bound on quantum chaos by entanglement growth [0.7734726150561088]
We show that for one-dimensional quantum cellular automata there exists a lower bound on quantum chaos quantified by entanglement entropy.
Our result is robust against exponential tails which naturally appear in quantum dynamics generated by local Hamiltonians.
arXiv Detail & Related papers (2020-12-04T18:48:56Z) - Quantum speed limits for time evolution of a system subspace [77.34726150561087]
In the present work, we are concerned not with a single state but with a whole (possibly infinite-dimensional) subspace of the system states that are subject to the Schroedinger evolution.
We derive an optimal estimate on the speed of such a subspace evolution that may be viewed as a natural generalization of the Fleming bound.
arXiv Detail & Related papers (2020-11-05T12:13:18Z) - Improved thermal area law and quasi-linear time algorithm for quantum
Gibbs states [14.567067583556714]
We propose a new thermal area law that holds for generic many-body systems on lattices.
We improve the temperature dependence from the original $mathcalO(beta)$ to $tildemathcalO(beta2/3)$.
We also prove analogous bounds for the R'enyi entanglement of purification and the entanglement of formation.
arXiv Detail & Related papers (2020-07-22T02:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.