論文の概要: Learn2Mix: Training Neural Networks Using Adaptive Data Integration
- arxiv url: http://arxiv.org/abs/2412.16482v1
- Date: Sat, 21 Dec 2024 04:40:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:47.444799
- Title: Learn2Mix: Training Neural Networks Using Adaptive Data Integration
- Title(参考訳): Learn2Mix: 適応データ統合によるニューラルネットワークのトレーニング
- Authors: Shyam Venkatasubramanian, Vahid Tarokh,
- Abstract要約: learn2mixは、バッチ内のクラス比率を適応的に調整する新しいトレーニング戦略で、エラー率の高いクラスに重点を置いている。
経験的評価では、Learner2mixでトレーニングされたニューラルネットワークは、古典的なアプローチでトレーニングされたニューラルネットワークよりも早く収束している。
- 参考スコア(独自算出の注目度): 24.082008483056462
- License:
- Abstract: Accelerating model convergence in resource-constrained environments is essential for fast and efficient neural network training. This work presents learn2mix, a new training strategy that adaptively adjusts class proportions within batches, focusing on classes with higher error rates. Unlike classical training methods that use static class proportions, learn2mix continually adapts class proportions during training, leading to faster convergence. Empirical evaluations on benchmark datasets show that neural networks trained with learn2mix converge faster than those trained with classical approaches, achieving improved results for classification, regression, and reconstruction tasks under limited training resources and with imbalanced classes. Our empirical findings are supported by theoretical analysis.
- Abstract(参考訳): 資源制約のある環境におけるモデル収束の加速は、高速で効率的なニューラルネットワークトレーニングに不可欠である。
この研究は、バッチ内のクラス比率を適応的に調整し、より高いエラー率のクラスにフォーカスする新しいトレーニング戦略である learn2mixを提示する。
静的なクラス比例を使用する古典的なトレーニング方法とは異なり、Learner2mixはトレーニング中にクラス比例を継続的に適用し、より高速な収束をもたらす。
ベンチマークデータセットの実証的な評価によると、Learner2mixでトレーニングされたニューラルネットワークは、古典的なアプローチでトレーニングされたニューラルネットワークよりも早く収束し、限られたトレーニングリソースと不均衡なクラスの下での分類、回帰、再構築タスクの改善結果を達成する。
我々の経験的発見は理論的分析によって裏付けられている。
関連論文リスト
- Adaptive Class Emergence Training: Enhancing Neural Network Stability and Generalization through Progressive Target Evolution [0.0]
分類問題におけるニューラルネットワークの新しいトレーニング手法を提案する。
我々は、トレーニングプロセスを通して、ヌルベクトルから1ホットの符号化ベクターへのターゲット出力を進化させる。
この段階的な遷移により、ネットワークは分類タスクの複雑さの増大によりスムーズに適応できる。
論文 参考訳(メタデータ) (2024-09-04T03:25:48Z) - Simplifying Neural Network Training Under Class Imbalance [77.39968702907817]
実世界のデータセットは、しばしば高いクラス不均衡であり、ディープラーニングモデルのパフォーマンスに悪影響を及ぼす可能性がある。
クラス不均衡下でのニューラルネットワークのトレーニングに関する研究の大部分は、特殊な損失関数、サンプリング技術、または2段階のトレーニング手順に焦点を当てている。
バッチサイズやデータ拡張,ラベルの平滑化といった,標準的なディープラーニングパイプラインの既存のコンポーネントを単にチューニングするだけで,そのような特殊なクラス不均衡な手法を使わずに,最先端のパフォーマンスを達成できることを実証する。
論文 参考訳(メタデータ) (2023-12-05T05:52:44Z) - Accurate Neural Network Pruning Requires Rethinking Sparse Optimization [87.90654868505518]
標準コンピュータビジョンと自然言語処理の疎度ベンチマークを用いたモデルトレーニングにおいて,高い疎度が与える影響について述べる。
本稿では,視覚モデルのスパース事前学習と言語モデルのスパース微調整の両面において,この問題を軽減するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-03T21:49:14Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Efficient Augmentation for Imbalanced Deep Learning [8.38844520504124]
本研究では、畳み込みニューラルネットワークの内部表現である不均衡画像データについて検討する。
モデルの特徴埋め込みとテストセットの一般化ギャップを測定し、マイノリティクラスではそのギャップが広いことを示す。
この洞察により、不均衡なデータのための効率的な3相CNNトレーニングフレームワークを設計できる。
論文 参考訳(メタデータ) (2022-07-13T09:43:17Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Training Sparse Neural Networks using Compressed Sensing [13.84396596420605]
本研究では,プレニングとトレーニングを1ステップに組み合わせた圧縮センシングに基づく新しい手法の開発と試験を行う。
具体的には、トレーニング中の重みを適応的に重み付けした$ell1$のペナルティを利用して、スパースニューラルネットワークをトレーニングするために、正規化二重平均化(RDA)アルゴリズムの一般化と組み合わせる。
論文 参考訳(メタデータ) (2020-08-21T19:35:54Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
本稿では,畳み込みニューラルネットワークの学習にバックプロパゲーションと進化戦略の両方を用いるハイブリッド手法を提案する。
画像分類のタスクにおいて,提案手法は定期的な訓練において改善可能であることを示す。
論文 参考訳(メタデータ) (2020-04-15T17:52:48Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。