Prior2Posterior: Model Prior Correction for Long-Tailed Learning
- URL: http://arxiv.org/abs/2412.16540v1
- Date: Sat, 21 Dec 2024 08:49:02 GMT
- Title: Prior2Posterior: Model Prior Correction for Long-Tailed Learning
- Authors: S Divakar Bhat, Amit More, Mudit Soni, Surbhi Agrawal,
- Abstract summary: We propose a novel approach to accurately model the effective prior of a trained model using textita posteriori probabilities.
We show that the proposed approach achieves new state-of-the-art (SOTA) on several benchmark datasets from the long-tail literature.
- Score: 0.41248472494152805
- License:
- Abstract: Learning-based solutions for long-tailed recognition face difficulties in generalizing on balanced test datasets. Due to imbalanced data prior, the learned \textit{a posteriori} distribution is biased toward the most frequent (head) classes, leading to an inferior performance on the least frequent (tail) classes. In general, the performance can be improved by removing such a bias by eliminating the effect of imbalanced prior modeled using the number of class samples (frequencies). We first observe that the \textit{effective prior} on the classes, learned by the model at the end of the training, can differ from the empirical prior obtained using class frequencies. Thus, we propose a novel approach to accurately model the effective prior of a trained model using \textit{a posteriori} probabilities. We propose to correct the imbalanced prior by adjusting the predicted \textit{a posteriori} probabilities (Prior2Posterior: P2P) using the calculated prior in a post-hoc manner after the training, and show that it can result in improved model performance. We present theoretical analysis showing the optimality of our approach for models trained with naive cross-entropy loss as well as logit adjusted loss. Our experiments show that the proposed approach achieves new state-of-the-art (SOTA) on several benchmark datasets from the long-tail literature in the category of logit adjustment methods. Further, the proposed approach can be used to inspect any existing method to capture the \textit{effective prior} and remove any residual bias to improve its performance, post-hoc, without model retraining. We also show that by using the proposed post-hoc approach, the performance of many existing methods can be improved further.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models [75.9543301303586]
Foundation models like CLIP allow zero-shot transfer on various tasks without additional training data.
Fine-tuning and ensembling are also commonly adopted to better fit the downstream tasks.
However, we argue that prior work has overlooked the inherent biases in foundation models.
arXiv Detail & Related papers (2023-10-12T08:01:11Z) - Distributionally Robust Post-hoc Classifiers under Prior Shifts [31.237674771958165]
We investigate the problem of training models that are robust to shifts caused by changes in the distribution of class-priors or group-priors.
We present an extremely lightweight post-hoc approach that performs scaling adjustments to predictions from a pre-trained model.
arXiv Detail & Related papers (2023-09-16T00:54:57Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
arXiv Detail & Related papers (2023-09-15T13:04:55Z) - RDumb: A simple approach that questions our progress in continual test-time adaptation [12.374649969346441]
Test-Time Adaptation (TTA) allows to update pre-trained models to changing data distributions at deployment time.
Recent work proposed and applied methods for continual adaptation over long timescales.
We find that eventually all but one state-of-the-art methods collapse and perform worse than a non-adapting model.
arXiv Detail & Related papers (2023-06-08T17:52:34Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - End-to-End Weak Supervision [15.125993628007972]
We propose an end-to-end approach for directly learning the downstream model.
We show improved performance over prior work in terms of end model performance on downstream test sets.
arXiv Detail & Related papers (2021-07-05T19:10:11Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Last Layer Marginal Likelihood for Invariance Learning [12.00078928875924]
We introduce a new lower bound to the marginal likelihood, which allows us to perform inference for a larger class of likelihood functions.
We work towards bringing this approach to neural networks by using an architecture with a Gaussian process in the last layer.
arXiv Detail & Related papers (2021-06-14T15:40:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.