Divide and Conquer: A Hybrid Strategy Defeats Multimodal Large Language Models
- URL: http://arxiv.org/abs/2412.16555v1
- Date: Sat, 21 Dec 2024 09:43:51 GMT
- Title: Divide and Conquer: A Hybrid Strategy Defeats Multimodal Large Language Models
- Authors: Yanxu Mao, Peipei Liu, Tiehan Cui, Congying Liu, Datao You,
- Abstract summary: This paper proposes a multimodal jailbreaking method: JMLLM.
It integrates multiple strategies to perform comprehensive jailbreak attacks across text, visual, and auditory modalities.
We also contribute a new and comprehensive dataset for multimodal jailbreaking research: TriJail.
- Score: 1.0291559330120414
- License:
- Abstract: Large language models (LLMs) are widely applied in various fields of society due to their powerful reasoning, understanding, and generation capabilities. However, the security issues associated with these models are becoming increasingly severe. Jailbreaking attacks, as an important method for detecting vulnerabilities in LLMs, have been explored by researchers who attempt to induce these models to generate harmful content through various attack methods. Nevertheless, existing jailbreaking methods face numerous limitations, such as excessive query counts, limited coverage of jailbreak modalities, low attack success rates, and simplistic evaluation methods. To overcome these constraints, this paper proposes a multimodal jailbreaking method: JMLLM. This method integrates multiple strategies to perform comprehensive jailbreak attacks across text, visual, and auditory modalities. Additionally, we contribute a new and comprehensive dataset for multimodal jailbreaking research: TriJail, which includes jailbreak prompts for all three modalities. Experiments on the TriJail dataset and the benchmark dataset AdvBench, conducted on 13 popular LLMs, demonstrate advanced attack success rates and significant reduction in time overhead.
Related papers
- xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - Heuristic-Induced Multimodal Risk Distribution Jailbreak Attack for Multimodal Large Language Models [3.452274739430025]
We propose a multimodal-induced jailbreak attack method, called HIMRD, which consists of two elements.
The understanding-enhancing prompt helps the MLLM reconstruct the malicious prompt, and the inducing prompt, which increases the likelihood of affirmative outputs.
This approach effectively uncovers vulnerabilities in MLLMs, achieving an average attack success rate of 90% across seven popular open-source MLLMs and an average attack success rate of around 68% in three popular closed-source MLLMs.
arXiv Detail & Related papers (2024-12-08T13:20:45Z) - MRJ-Agent: An Effective Jailbreak Agent for Multi-Round Dialogue [35.7801861576917]
Large Language Models (LLMs) demonstrate outstanding performance in their reservoir of knowledge and understanding capabilities.
LLMs have been shown to be prone to illegal or unethical reactions when subjected to jailbreak attacks.
We propose a novel multi-round dialogue jailbreaking agent, emphasizing the importance of stealthiness in identifying and mitigating potential threats to human values.
arXiv Detail & Related papers (2024-11-06T10:32:09Z) - Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
We propose a novel black-box jailbreak attacking framework that incorporates various LLM-as-Attacker methods.
Our method is designed based on three key observations from existing jailbreaking studies and practices.
arXiv Detail & Related papers (2024-10-31T01:55:33Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks.
Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40%.
arXiv Detail & Related papers (2024-06-28T11:35:54Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
This paper introduces EasyJailbreak, a unified framework simplifying the construction and evaluation of jailbreak attacks against Large Language Models (LLMs)
It builds jailbreak attacks using four components: Selector, Mutator, Constraint, and Evaluator.
Our validation across 10 distinct LLMs reveals a significant vulnerability, with an average breach probability of 60% under various jailbreaking attacks.
arXiv Detail & Related papers (2024-03-18T18:39:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.