JailDAM: Jailbreak Detection with Adaptive Memory for Vision-Language Model
- URL: http://arxiv.org/abs/2504.03770v2
- Date: Tue, 08 Apr 2025 20:25:30 GMT
- Title: JailDAM: Jailbreak Detection with Adaptive Memory for Vision-Language Model
- Authors: Yi Nian, Shenzhe Zhu, Yuehan Qin, Li Li, Ziyi Wang, Chaowei Xiao, Yue Zhao,
- Abstract summary: Multimodal large language models (MLLMs) excel in vision-language tasks but pose significant risks of generating harmful content.<n>Jailbreak attacks refer to intentional manipulations that bypass safety mechanisms in models, leading to the generation of inappropriate or unsafe content.<n>We introduce a test-time adaptive framework called JAILDAM to address these issues.
- Score: 25.204224437843365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal large language models (MLLMs) excel in vision-language tasks but also pose significant risks of generating harmful content, particularly through jailbreak attacks. Jailbreak attacks refer to intentional manipulations that bypass safety mechanisms in models, leading to the generation of inappropriate or unsafe content. Detecting such attacks is critical to ensuring the responsible deployment of MLLMs. Existing jailbreak detection methods face three primary challenges: (1) Many rely on model hidden states or gradients, limiting their applicability to white-box models, where the internal workings of the model are accessible; (2) They involve high computational overhead from uncertainty-based analysis, which limits real-time detection, and (3) They require fully labeled harmful datasets, which are often scarce in real-world settings. To address these issues, we introduce a test-time adaptive framework called JAILDAM. Our method leverages a memory-based approach guided by policy-driven unsafe knowledge representations, eliminating the need for explicit exposure to harmful data. By dynamically updating unsafe knowledge during test-time, our framework improves generalization to unseen jailbreak strategies while maintaining efficiency. Experiments on multiple VLM jailbreak benchmarks demonstrate that JAILDAM delivers state-of-the-art performance in harmful content detection, improving both accuracy and speed.
Related papers
- T2VShield: Model-Agnostic Jailbreak Defense for Text-to-Video Models [88.63040835652902]
Text to video models are vulnerable to jailbreak attacks, where specially crafted prompts bypass safety mechanisms and lead to the generation of harmful or unsafe content.
We propose T2VShield, a comprehensive and model agnostic defense framework designed to protect text to video models from jailbreak threats.
Our method systematically analyzes the input, model, and output stages to identify the limitations of existing defenses.
arXiv Detail & Related papers (2025-04-22T01:18:42Z) - SafeInt: Shielding Large Language Models from Jailbreak Attacks via Safety-Aware Representation Intervention [14.509085965856643]
Jailbreak attacks exploit vulnerabilities in large language models (LLMs) to induce undesirable behavior.
Previous defenses often fail to achieve both effectiveness and efficiency simultaneously.
We propose SafeIntervention (SafeInt), a novel defense method that shields LLMs from jailbreak attacks through safety-aware representation intervention.
arXiv Detail & Related papers (2025-02-21T17:12:35Z) - DELMAN: Dynamic Defense Against Large Language Model Jailbreaking with Model Editing [62.43110639295449]
Large Language Models (LLMs) are widely applied in decision making, but their deployment is threatened by jailbreak attacks.
Delman is a novel approach leveraging direct model editing for precise, dynamic protection against jailbreak attacks.
Delman directly updates a minimal set of relevant parameters to neutralize harmful behaviors while preserving the model's utility.
arXiv Detail & Related papers (2025-02-17T10:39:21Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.<n>We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)<n>We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.<n>We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.<n>Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
arXiv Detail & Related papers (2024-12-22T14:18:39Z) - Divide and Conquer: A Hybrid Strategy Defeats Multimodal Large Language Models [1.0291559330120414]
This paper proposes a multimodal jailbreaking method: JMLLM.
It integrates multiple strategies to perform comprehensive jailbreak attacks across text, visual, and auditory modalities.
We also contribute a new and comprehensive dataset for multimodal jailbreaking research: TriJail.
arXiv Detail & Related papers (2024-12-21T09:43:51Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
This paper advocates for the significance of jailbreak attack prevention on Large Language Models (LLMs)
We introduce MoJE, a novel guardrail architecture designed to surpass current limitations in existing state-of-the-art guardrails.
MoJE excels in detecting jailbreak attacks while maintaining minimal computational overhead during model inference.
arXiv Detail & Related papers (2024-09-26T10:12:19Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
This paper introduces Virtual Context, which leverages special tokens, previously overlooked in LLM security, to improve jailbreak attacks.
Comprehensive evaluations show that Virtual Context-assisted jailbreak attacks can improve the success rates of four widely used jailbreak methods by approximately 40%.
arXiv Detail & Related papers (2024-06-28T11:35:54Z) - WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models [66.34505141027624]
We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics.
WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks.
arXiv Detail & Related papers (2024-06-26T17:31:22Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
Large Language Models (LLMs) have gained widespread adoption across various domains, including chatbots and auto-task completion agents.
These models are susceptible to safety vulnerabilities such as jailbreaking, prompt injection, and privacy leakage attacks.
This study investigates the impact of these modifications on LLM safety, a critical consideration for building reliable and secure AI systems.
arXiv Detail & Related papers (2024-04-05T20:31:45Z) - JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models [123.66104233291065]
Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content.
evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address.
JailbreakBench is an open-sourced benchmark with the following components.
arXiv Detail & Related papers (2024-03-28T02:44:02Z) - JailGuard: A Universal Detection Framework for LLM Prompt-based Attacks [34.95274579737075]
JailGuard is a universal detection framework for prompt-based attacks across text and image modalities.<n>It operates on the principle that attacks are inherently less robust than benign ones.<n>It achieves the best detection accuracy of 86.14%/82.90% on text and image inputs, outperforming state-of-the-art methods by 11.81%-25.73% and 12.20%-21.40%.
arXiv Detail & Related papers (2023-12-17T17:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.