Large baseline quantum telescopes assisted by partially distinguishable photons
- URL: http://arxiv.org/abs/2412.16571v1
- Date: Sat, 21 Dec 2024 10:27:51 GMT
- Title: Large baseline quantum telescopes assisted by partially distinguishable photons
- Authors: Subhrajit Modak, Pieter Kok,
- Abstract summary: We show that low photon occupancy of the optical mode of the starlight quickly deteriorates the sensitivity of the telescope for higher auxiliary photon numbers.
We find that the effect of distinguishability is relatively mild, but low photon occupancy of the optical mode of the starlight quickly deteriorates the sensitivity of the telescope for higher auxiliary photon numbers.
- Score: 0.0
- License:
- Abstract: Quantum entanglement can be used to extend the baseline of telescope arrays in order to increase the spatial resolution. In one proposal by Marchese and Kok [Phys. Rev. Lett. 130, 160801 (2023)], identical single photons are shared between receivers, and interfere with a star photon. In this paper we consider two outstanding questions: i) what is the precise effect of the low photon occupancy of the mode associated with the starlight, and ii) what is the effect on the achievable resolution of imperfect indistinguishability (or partial distinguishability) between the ground and star photons. We find that the effect of distinguishability is relatively mild, but low photon occupancy of the optical mode of the starlight quickly deteriorates the sensitivity of the telescope for higher auxiliary photon numbers.
Related papers
- Atomic diffraction from single-photon transitions in gravity and
Standard-Model extensions [49.26431084736478]
We study single-photon transitions, both magnetically-induced and direct ones, in gravity and Standard-Model extensions.
We take into account relativistic effects like the coupling of internal to center-of-mass degrees of freedom, induced by the mass defect.
arXiv Detail & Related papers (2023-09-05T08:51:42Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Boson bunching is not maximized by indistinguishable particles [0.0]
Boson bunching is one of the most remarkable features of quantum physics.
We disproof the link between indistinguishability and bunching by exploiting a recent finding in the theory of matrix permanents.
This unexpected behavior questions our understanding of multiparticle interference in the grey zone between indistinguishable bosons and classical particles.
arXiv Detail & Related papers (2022-03-02T18:50:48Z) - Quantum Interference of Identical Photons from Remote GaAs Quantum Dots [0.45507178426690204]
Photonic quantum technology provides a viable route to quantum communication, quantum simulation, and quantum information processing.
Recent progress has seen the realisation of boson sampling using 20 single-photons and quantum key distribution over hundreds of kilometres.
For applications, a significant roadblock is the poor quantum coherence upon interfering single photons created by independent quantum dots.
Here, we demonstrate two-photon interference with near-unity visibility ($93.0pm0.8$)% using photons from two completely separate GaAs quantum dots.
arXiv Detail & Related papers (2021-06-07T18:00:03Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Optical amplification for astronomical imaging at higher resolution [0.0]
Heisenberg's uncertainty principle tells us that it is impossible to determine simultaneously the position of a photon crossing a telescope's aperture and its momentum.
Super-resolution imaging techniques rely on modification of the observed sample, or on entangling photons.
We show that it is possible to increase the weight of the stimulated photons by considering photon statistics.
arXiv Detail & Related papers (2021-03-24T10:48:50Z) - Lost photon enhances superresolution [0.0]
Quantum imaging can beat classical resolution limits, imposed by diffraction of light.
We show that for measuring $(n-1)$-photon coincidences, PSF can be made even narrower.
This observation paves a way for a strong conditional resolution enhancement by registering one of the photons outside the imaging area.
arXiv Detail & Related papers (2021-01-14T19:55:56Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Photorefractive effect in LiNbO$_3$-based integrated-optical circuits
for continuous variable experiments [45.82374977939355]
Photorefractive effect might compromise success of on-chip quantum photonics experiments.
We focus on photorefractive effect induced by light at 775 nm, in the context of the generation of non-classical light at 1550 nm telecom wavelength.
arXiv Detail & Related papers (2020-07-22T12:37:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.