Kernel Methods for the Approximation of the Eigenfunctions of the Koopman Operator
- URL: http://arxiv.org/abs/2412.16588v1
- Date: Sat, 21 Dec 2024 11:25:51 GMT
- Title: Kernel Methods for the Approximation of the Eigenfunctions of the Koopman Operator
- Authors: Jonghyeon Lee, Boumediene Hamzi, Boya Hou, Houman Owhadi, Gabriele Santin, Umesh Vaidya,
- Abstract summary: We introduce a kernel-based method to construct the principal eigenfunctions of the Koopman operator without explicitly computing the operator itself.
We exploit the structure of the principal eigenfunctions by decomposing them into linear and nonlinear components.
- Score: 1.7702475609045947
- License:
- Abstract: The Koopman operator provides a linear framework to study nonlinear dynamical systems. Its spectra offer valuable insights into system dynamics, but the operator can exhibit both discrete and continuous spectra, complicating direct computations. In this paper, we introduce a kernel-based method to construct the principal eigenfunctions of the Koopman operator without explicitly computing the operator itself. These principal eigenfunctions are associated with the equilibrium dynamics, and their eigenvalues match those of the linearization of the nonlinear system at the equilibrium point. We exploit the structure of the principal eigenfunctions by decomposing them into linear and nonlinear components. The linear part corresponds to the left eigenvector of the system's linearization at the equilibrium, while the nonlinear part is obtained by solving a partial differential equation (PDE) using kernel methods. Our approach avoids common issues such as spectral pollution and spurious eigenvalues, which can arise in previous methods. We demonstrate the effectiveness of our algorithm through numerical examples.
Related papers
- Kernel Operator-Theoretic Bayesian Filter for Nonlinear Dynamical Systems [25.922732994397485]
We propose a machine-learning alternative based on a functional Bayesian perspective for operator-theoretic modeling.
This formulation is directly done in an infinite-dimensional space of linear operators or Hilbert space with universal approximation property.
We demonstrate that this practical approach can obtain accurate results and outperform finite-dimensional Koopman decomposition.
arXiv Detail & Related papers (2024-10-31T20:31:31Z) - Compression of the Koopman matrix for nonlinear physical models via hierarchical clustering [0.0]
The linear characteristics of the Koopman operator are hopeful to understand the nonlinear dynamics.
In this work, we propose a method to compress the Koopman matrix using hierarchical clustering.
arXiv Detail & Related papers (2024-03-27T01:18:00Z) - Propagating Kernel Ambiguity Sets in Nonlinear Data-driven Dynamics
Models [3.743859059772078]
Given a nonlinear data-driven dynamical system model, how can one propagate the ambiguity sets forward for multiple steps?
This problem is the key to solving distributionally robust control and learning-based control of such learned system models under a data-distribution shift.
We propose an algorithm that exactly propagates ambiguity sets through nonlinear data-driven models using the Koopman operator and CME, via the kernel maximum mean discrepancy geometry.
arXiv Detail & Related papers (2023-04-27T09:38:49Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
We study reinforcement learning for partially observed decision processes (POMDPs) with infinite observation and state spaces.
We make the first attempt at partial observability and function approximation for a class of POMDPs with a linear structure.
arXiv Detail & Related papers (2022-04-20T21:15:38Z) - Learning the Koopman Eigendecomposition: A Diffeomorphic Approach [7.309026600178573]
We present a novel data-driven approach for learning linear representations of a class of stable nonlinear systems using Koopman eigenfunctions.
To our best knowledge, this is the first work to close the gap between the operator, system and learning theories.
arXiv Detail & Related papers (2021-10-15T00:47:21Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Estimating Koopman operators for nonlinear dynamical systems: a
nonparametric approach [77.77696851397539]
The Koopman operator is a mathematical tool that allows for a linear description of non-linear systems.
In this paper we capture their core essence as a dual version of the same framework, incorporating them into the Kernel framework.
We establish a strong link between kernel methods and Koopman operators, leading to the estimation of the latter through Kernel functions.
arXiv Detail & Related papers (2021-03-25T11:08:26Z) - Linear embedding of nonlinear dynamical systems and prospects for
efficient quantum algorithms [74.17312533172291]
We describe a method for mapping any finite nonlinear dynamical system to an infinite linear dynamical system (embedding)
We then explore an approach for approximating the resulting infinite linear system with finite linear systems (truncation)
arXiv Detail & Related papers (2020-12-12T00:01:10Z) - Eigendecomposition-Free Training of Deep Networks for Linear
Least-Square Problems [107.3868459697569]
We introduce an eigendecomposition-free approach to training a deep network.
We show that our approach is much more robust than explicit differentiation of the eigendecomposition.
Our method has better convergence properties and yields state-of-the-art results.
arXiv Detail & Related papers (2020-04-15T04:29:34Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.