論文の概要: Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval
- arxiv url: http://arxiv.org/abs/2412.16615v1
- Date: Sat, 21 Dec 2024 13:19:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:21.818299
- Title: Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval
- Title(参考訳): 大規模言語モデルが隠れRationaleベースの検索基盤になる
- Authors: Luo Ji, Feixiang Guo, Teng Chen, Qingqing Gu, Xiaoyu Wang, Ningyuan Xi, Yihong Wang, Peng Yu, Yue Zhao, Hongyang Lei, Zhonglin Jiang, Yong Chen,
- Abstract要約: 本稿では,隠れ合理性検索という,より困難なタイプの検索タスクを提案し,検討する。
このような問題に対処するためには、命令調整付き大規模言語モデル(LLM)とクロスエンコーダアーキテクチャが妥当な選択である可能性がある。
我々は、RaHoReによってこの検索フレームワークを命名し、感情支援会話(ESC)におけるゼロショットおよび微調整性能上の優位性を検証した。
- 参考スコア(独自算出の注目度): 12.83513794686623
- License:
- Abstract: Despite the recent advancement in Retrieval-Augmented Generation (RAG) systems, most retrieval methodologies are often developed for factual retrieval, which assumes query and positive documents are semantically similar. In this paper, we instead propose and study a more challenging type of retrieval task, called hidden rationale retrieval, in which query and document are not similar but can be inferred by reasoning chains, logic relationships, or empirical experiences. To address such problems, an instruction-tuned Large language model (LLM) with a cross-encoder architecture could be a reasonable choice. To further strengthen pioneering LLM-based retrievers, we design a special instruction that transforms the retrieval task into a generative task by prompting LLM to answer a binary-choice question. The model can be fine-tuned with direct preference optimization (DPO). The framework is also optimized for computational efficiency with no performance degradation. We name this retrieval framework by RaHoRe and verify its zero-shot and fine-tuned performance superiority on Emotional Support Conversation (ESC), compared with previous retrieval works. Our study suggests the potential to employ LLM as a foundation for a wider scope of retrieval tasks. Our codes, models, and datasets are available on https://github.com/flyfree5/LaHoRe.
- Abstract(参考訳): 近年のRAG(Retrieval-Augmented Generation)システムの発展にもかかわらず、ほとんどの検索手法は事実検索のために開発され、クエリと肯定的な文書は意味論的に類似していると仮定される。
そこで本研究では,クエリとドキュメントは類似しないが,推論チェーンや論理関係,経験的経験によって推測できる,隠れ合理性検索という,より困難なタイプの検索タスクを提案し,検討する。
このような問題に対処するためには、命令調整付き大規模言語モデル(LLM)とクロスエンコーダアーキテクチャが妥当な選択である可能性がある。
先駆的なLLMベースのレトリバーをさらに強化するために、LLMに二分選択質問に答えるよう促すことで、検索タスクを生成タスクに変換する特別な命令を設計する。
モデルは直接選好最適化(DPO)で微調整できる。
このフレームワークは性能劣化のない計算効率にも最適化されている。
我々は、RaHoReによってこの検索フレームワークを命名し、以前の検索作業と比較して、感情支援会話(ESC)におけるゼロショットおよび微調整性能上の優位性を検証した。
本研究は,LLMを検索タスクの幅広い範囲の基盤として活用する可能性を示唆している。
私たちのコード、モデル、データセットはhttps://github.com/flyfree5/LaHoReで公開されています。
関連論文リスト
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。
我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。
私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (2024-11-19T16:54:45Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - RARe: Retrieval Augmented Retrieval with In-Context Examples [40.963703726988946]
本稿では,検索者がコンテキスト内例を利用できるためのシンプルなアプローチを提案する。
RAREは、クエリがターゲットクエリとセマンティックに類似しているコンテキスト内の例で事前訓練されたモデルを微調整する。
RAReは、コンテキスト内例のないクエリを用いたモデルと比較して、ドメイン外一般化がより強力であることがわかった。
論文 参考訳(メタデータ) (2024-10-26T05:46:20Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
大規模言語モデル(LLM)は、検索対象のパイプラインで強力なブラックボックスリーダーを動作させる。
この作業では、検索拡張LDMに対する以前の検索テーマ読み込みの代わりに、新しいフレームワークであるRewrite-Retrieve-Readを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:27:50Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。