NILE: Internal Consistency Alignment in Large Language Models
- URL: http://arxiv.org/abs/2412.16686v1
- Date: Sat, 21 Dec 2024 16:25:16 GMT
- Title: NILE: Internal Consistency Alignment in Large Language Models
- Authors: Minda Hu, Qiyuan Zhang, Yufei Wang, Bowei He, Hongru Wang, Jingyan Zhou, Liangyou Li, Yasheng Wang, Chen Ma, Irwin King,
- Abstract summary: We introduce NILE (iNternal consIstency aLignmEnt) framework, aimed at optimizing IFT datasets to unlock LLMs' capability further.
NILE operates by eliciting target pre-trained LLM's internal knowledge corresponding to instruction data.
Our experiments demonstrate that NILE-aligned IFT datasets sharply boost LLM performance across multiple ability evaluation datasets.
- Score: 59.16120063368364
- License:
- Abstract: As a crucial step to enhance LLMs alignment with human intentions, Instruction Fine-Tuning (IFT) has a high demand on dataset quality. However, existing IFT datasets often contain knowledge that is inconsistent with LLMs' internal knowledge learned from the pre-training phase, which can greatly affect the efficacy of IFT. To address this issue, we introduce NILE (iNternal consIstency aLignmEnt) framework, aimed at optimizing IFT datasets to unlock LLMs' capability further. NILE operates by eliciting target pre-trained LLM's internal knowledge corresponding to instruction data. The internal knowledge is leveraged to revise the answer in IFT datasets. Additionally, we propose a novel Internal Consistency Filtering (ICF) method to filter training samples, ensuring its high consistency with LLM's internal knowledge. Our experiments demonstrate that NILE-aligned IFT datasets sharply boost LLM performance across multiple LLM ability evaluation datasets, achieving up to 66.6% gain on Arena-Hard and 68.5% on Alpaca-Eval V2. Further analysis confirms that each component of the NILE}framework contributes to these substantial performance improvements, and provides compelling evidence that dataset consistency with pre-trained internal knowledge is pivotal for maximizing LLM potential.
Related papers
- Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVA is a framework designed to identify high-quality data that aligns well with the learned knowledge to reduce hallucinations.
It includes Internal Consistency Probing (ICP) and Semantic Equivalence Identification (SEI) to measure how familiar the LLM is with instruction data.
To ensure the quality of selected samples, we introduce an expert-aligned reward model, considering characteristics beyond just familiarity.
arXiv Detail & Related papers (2025-02-11T08:05:56Z) - Optimizing Knowledge Integration in Retrieval-Augmented Generation with Self-Selection [72.92366526004464]
Retrieval-Augmented Generation (RAG) has proven effective in enabling Large Language Models (LLMs) to produce more accurate and reliable responses.
We propose a novel Self-Selection RAG framework, where the LLM is made to select from pairwise responses generated with internal parametric knowledge solely.
arXiv Detail & Related papers (2025-02-10T04:29:36Z) - Data Quality Control in Federated Instruction-tuning of Large Language Models [43.29678396558287]
We propose a new framework of federated instruction tuning of large language models (LLMs) with data quality control (FedDQC)
Our approach introduces an efficient metric to assess each client's instruction-response alignment (IRA), identifying potentially noisy data through single-shot inference.
We conduct extensive experiments on 4 synthetic and a real-world dataset, and compare our method with baselines adapted from centralized setting.
arXiv Detail & Related papers (2024-10-15T12:14:57Z) - 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.
We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.
Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - BIDER: Bridging Knowledge Inconsistency for Efficient Retrieval-Augmented LLMs via Key Supporting Evidence [23.55601157586831]
This paper introduces BIDER, an approach that refines retrieval documents into Key Supporting Evidence.
We train BIDER by learning from crafting KSE, while maximizing its output to align with LLM's information acquisition preferences.
Evaluations show BIDER boosts LLMs' answer quality by 7% while reducing input content length in retrieval documents by 80%, outperforming existing methods.
arXiv Detail & Related papers (2024-02-19T14:28:31Z) - Vision-Language Instruction Tuning: A Review and Analysis [52.218690619616474]
Vision-Language Instruction Tuning (VLIT) presents more complex characteristics compared to pure text instruction tuning.
We offer a detailed categorization for existing VLIT datasets and identify the characteristics that high-quality VLIT data should possess.
By incorporating these characteristics as guiding principles into the existing VLIT data construction process, we conduct extensive experiments and verify their positive impact on the performance of tuned multi-modal LLMs.
arXiv Detail & Related papers (2023-11-14T14:02:32Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.