論文の概要: Coupling Neural Networks and Physics Equations For Li-Ion Battery State-of-Charge Prediction
- arxiv url: http://arxiv.org/abs/2412.16724v1
- Date: Sat, 21 Dec 2024 18:19:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:54:03.483035
- Title: Coupling Neural Networks and Physics Equations For Li-Ion Battery State-of-Charge Prediction
- Title(参考訳): リチウムイオン電池の充電状態予測のためのニューラルネットワークと物理方程式の結合
- Authors: Giovanni Pollo, Alessio Burrello, Enrico Macii, Massimo Poncino, Sara Vinco, Daniele Jahier Pagliari,
- Abstract要約: 2つの枝でできた新しいNNアーキテクチャを導入する。
NNのトレーニングにバッテリダイナミクスの方程式を統合する。
2つのパブリックアクセス可能なデータセットに対して、我々のアプローチを検証する。
- 参考スコア(独自算出の注目度): 11.37246616300386
- License:
- Abstract: Estimating the evolution of the battery's State of Charge (SoC) in response to its usage is critical for implementing effective power management policies and for ultimately improving the system's lifetime. Most existing estimation methods are either physics-based digital twins of the battery or data-driven models such as Neural Networks (NNs). In this work, we propose two new contributions in this domain. First, we introduce a novel NN architecture formed by two cascaded branches: one to predict the current SoC based on sensor readings, and one to estimate the SoC at a future time as a function of the load behavior. Second, we integrate battery dynamics equations into the training of our NN, merging the physics-based and data-driven approaches, to improve the models' generalization over variable prediction horizons. We validate our approach on two publicly accessible datasets, showing that our Physics-Informed Neural Networks (PINNs) outperform purely data-driven ones while also obtaining superior prediction accuracy with a smaller architecture with respect to the state-of-the-art.
- Abstract(参考訳): 使用量に応じて電池の充電状態(SoC)の進化を推定することは、効率的な電力管理ポリシーを実装し、究極的にはシステムの寿命を改善するために重要である。
既存の推定方法は、バッテリの物理ベースのデジタルツインか、ニューラルネットワーク(NN)のようなデータ駆動モデルのいずれかである。
本稿では,この領域における2つの新しいコントリビューションを提案する。
まず、センサの読み取りに基づいて現在のSoCを予測し、負荷挙動の関数として将来、SoCを推定する。
第2に,ニューラルネットワークのトレーニングにバッテリダイナミクスの方程式を統合し,物理とデータ駆動のアプローチを融合させ,変動予測地平線に対するモデルの一般化を改善する。
我々は、我々のアプローチを2つの公開データセットで検証し、我々の物理情報ニューラルネットワーク(PINN)が純粋にデータ駆動のデータセットよりも優れており、また、最先端のアーキテクチャに関してより小さなアーキテクチャでより優れた予測精度を得ることができることを示した。
関連論文リスト
- Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
電力負荷予測は、需要と供給収支を補助するスマートグリッドの中で不可欠なタスクである。
きめ細かい負荷プロファイルは、ユーザの消費電力の挙動を公開できるため、プライバシやセキュリティ上の懸念が高まる。
本稿では,短期電力負荷予測のためのフェデレーション学習を用いた変圧器を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T15:27:55Z) - Physics-informed machine learning of redox flow battery based on a
two-dimensional unit cell model [1.8147447763965252]
本稿では,全バナジウムレドックスフローバッテリの性能を予測するために,物理インフォームドニューラルネットワーク(PINN)を提案する。
数値計算の結果,PINNはセル電圧を正確に予測できるが,電位の予測は一定の変化を示す。
論文 参考訳(メタデータ) (2023-05-31T22:06:30Z) - MINN: Learning the dynamics of differential-algebraic equations and
application to battery modeling [3.900623554490941]
我々は、モデル統合ニューラルネットワーク(MINN)を生成するための新しいアーキテクチャを提案する。
MINNは、システムの物理に基づく力学の学習レベルとの統合を可能にする。
提案したニューラルネットワークアーキテクチャを用いてリチウムイオン電池の電気化学的ダイナミクスをモデル化する。
論文 参考訳(メタデータ) (2023-04-27T09:11:40Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Estimating State of Charge for xEV batteries using 1D Convolutional
Neural Networks and Transfer Learning [0.4129225533930966]
電気自動車における1次元畳み込みニューラルネットワーク(CNN)に基づく電荷推定アルゴリズムを提案する。
異なる種類の雑音がCNNモデルの推定能力に与える影響について検討した。
提案手法は,推定精度,学習速度,一般化能力の点で良好である。
論文 参考訳(メタデータ) (2020-11-02T09:27:03Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。