論文の概要: Secure short-term load forecasting for smart grids with
transformer-based federated learning
- arxiv url: http://arxiv.org/abs/2310.17477v1
- Date: Thu, 26 Oct 2023 15:27:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 19:37:24.204455
- Title: Secure short-term load forecasting for smart grids with
transformer-based federated learning
- Title(参考訳): 変圧器型フェデレーション学習によるスマートグリッドの安全な短期負荷予測
- Authors: Jonas Sievers, Thomas Blank
- Abstract要約: 電力負荷予測は、需要と供給収支を補助するスマートグリッドの中で不可欠なタスクである。
きめ細かい負荷プロファイルは、ユーザの消費電力の挙動を公開できるため、プライバシやセキュリティ上の懸念が高まる。
本稿では,短期電力負荷予測のためのフェデレーション学習を用いた変圧器を用いた新しい深層学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electricity load forecasting is an essential task within smart grids to
assist demand and supply balance. While advanced deep learning models require
large amounts of high-resolution data for accurate short-term load predictions,
fine-grained load profiles can expose users' electricity consumption behaviors,
which raises privacy and security concerns. One solution to improve data
privacy is federated learning, where models are trained locally on private
data, and only the trained model parameters are merged and updated on a global
server. Therefore, this paper presents a novel transformer-based deep learning
approach with federated learning for short-term electricity load prediction. To
evaluate our results, we benchmark our federated learning architecture against
central and local learning and compare the performance of our model to long
short-term memory models and convolutional neural networks. Our simulations are
based on a dataset from a German university campus and show that
transformer-based forecasting is a promising alternative to state-of-the-art
models within federated learning.
- Abstract(参考訳): 電力負荷予測は、需要と供給収支を補助するスマートグリッドの中で不可欠なタスクである。
高度なディープラーニングモデルは、正確な短期負荷予測のために大量の高解像度データを必要とするが、きめ細かい負荷プロファイルは、ユーザの電力消費の振る舞いを露呈し、プライバシとセキュリティの懸念を引き起こす。
データプライバシを改善する方法のひとつにフェデレーション学習があり、モデルがプライベートデータ上でローカルにトレーニングされ、トレーニングされたモデルパラメータだけがグローバルサーバ上でマージされ更新される。
そこで本稿では,短期電力負荷予測のためのフェデレート学習を用いた新しいトランスベース深層学習手法を提案する。
この結果を評価するため,我々は,フェデレーション学習アーキテクチャを中央および局所学習と比較し,モデルの性能を長期記憶モデルや畳み込みニューラルネットワークと比較した。
我々のシミュレーションは、ドイツの大学キャンパスのデータセットに基づいており、トランスフォーマーに基づく予測は、フェデレートラーニングにおける最先端モデルに代わる有望な選択肢であることを示している。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach [9.687203504689563]
スマートグリッドの電力管理と安定性には電力負荷予測が不可欠である。
従来の機械学習(ML)手法は負荷予測によく使用されるが、データ共有は必要である。
フェデレートラーニング(FL)は、データ交換なしでローカルSMで分散MLモデルを実行することでこの問題に対処できる。
論文 参考訳(メタデータ) (2024-11-15T22:44:50Z) - Addressing Heterogeneity in Federated Load Forecasting with Personalization Layers [3.933147844455233]
PL-FLと呼ばれる一般的なフレームワークにおいて,負荷予測のためのパーソナライズレイヤを提案する。
PL-FLはFLよりも通信帯域幅が小さいため、FLと純粋に局所訓練に優れることを示す。
論文 参考訳(メタデータ) (2024-04-01T22:53:09Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Grid Frequency Forecasting in University Campuses using Convolutional
LSTM [0.0]
本稿では,畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)を用いて,グリッド周波数の堅牢な時間予測モデルを確立する。
個々のConvLSTMモデルは、各キャンパスビルの電力消費データに基づいて訓練され、歴史的傾向に基づいてグリッド周波数を予測する。
アンサンブルモデル(英: Ensemble Model)は、建物固有のモデルから洞察を収集し、キャンパス全体の総合的な予測を提供する。
論文 参考訳(メタデータ) (2023-10-24T13:53:51Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Transfer Learning in Deep Learning Models for Building Load Forecasting:
Case of Limited Data [0.0]
本稿では,この問題を克服し,ディープラーニングモデルの性能を向上させるためのビルディング・ツー・ビルディング・トランスファー・ラーニング・フレームワークを提案する。
提案手法は,スクラッチからトレーニングを行う従来のディープラーニングと比較して,予測精度を56.8%向上させた。
論文 参考訳(メタデータ) (2023-01-25T16:05:47Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - Federated Learning with Hyperparameter-based Clustering for Electrical
Load Forecasting [0.0]
本稿では,個別住宅負荷と集約負荷の短期予測のためのフェデレーション学習の性能を評価する。
本手法の利点とデメリットを,集中型および局所的な学習手法と比較することにより論じる。
その結果,フェデレート学習は,各負荷予測における最小ルート平均二乗誤差(RMSE)0.117kWhで良好な性能を示した。
論文 参考訳(メタデータ) (2021-11-14T22:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。