Coupling Neural Networks and Physics Equations For Li-Ion Battery State-of-Charge Prediction
- URL: http://arxiv.org/abs/2412.16724v1
- Date: Sat, 21 Dec 2024 18:19:12 GMT
- Title: Coupling Neural Networks and Physics Equations For Li-Ion Battery State-of-Charge Prediction
- Authors: Giovanni Pollo, Alessio Burrello, Enrico Macii, Massimo Poncino, Sara Vinco, Daniele Jahier Pagliari,
- Abstract summary: We introduce a novel NN architecture formed by two cascaded branches.
We integrate battery dynamics equations into the training of our NN.
We validate our approach on two publicly accessible datasets.
- Score: 11.37246616300386
- License:
- Abstract: Estimating the evolution of the battery's State of Charge (SoC) in response to its usage is critical for implementing effective power management policies and for ultimately improving the system's lifetime. Most existing estimation methods are either physics-based digital twins of the battery or data-driven models such as Neural Networks (NNs). In this work, we propose two new contributions in this domain. First, we introduce a novel NN architecture formed by two cascaded branches: one to predict the current SoC based on sensor readings, and one to estimate the SoC at a future time as a function of the load behavior. Second, we integrate battery dynamics equations into the training of our NN, merging the physics-based and data-driven approaches, to improve the models' generalization over variable prediction horizons. We validate our approach on two publicly accessible datasets, showing that our Physics-Informed Neural Networks (PINNs) outperform purely data-driven ones while also obtaining superior prediction accuracy with a smaller architecture with respect to the state-of-the-art.
Related papers
- Jacobian-Enforced Neural Networks (JENN) for Improved Data Assimilation Consistency in Dynamical Models [0.0]
Machine learning-based weather models have shown great promise in producing accurate forecasts but have struggled when applied to data assimilation tasks.
This study introduces the Jacobian-Enforced Neural Network (JENN) framework, designed to enhance DA consistency in neural network (NN)-emulated dynamical systems.
arXiv Detail & Related papers (2024-12-02T00:12:51Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
Electricity load forecasting is an essential task within smart grids to assist demand and supply balance.
Fine-grained load profiles can expose users' electricity consumption behaviors, which raises privacy and security concerns.
This paper presents a novel transformer-based deep learning approach with federated learning for short-term electricity load prediction.
arXiv Detail & Related papers (2023-10-26T15:27:55Z) - Physics-informed machine learning of redox flow battery based on a
two-dimensional unit cell model [1.8147447763965252]
We present a physics-informed neural network (PINN) approach for predicting the performance of an all-vanadium redox flow battery.
Our numerical results show that the PINN is able to predict cell voltage correctly, but the prediction of potentials shows a constant-like shift.
arXiv Detail & Related papers (2023-05-31T22:06:30Z) - MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling [2.1303885995425635]
We propose a novel machine learning architecture, termed model-integrated neural networks (MINN)
MINN learns the physics-based dynamics of general autonomous or non-autonomous systems consisting of partial differential-algebraic equations (PDAEs)
We apply the proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries.
arXiv Detail & Related papers (2023-04-27T09:11:40Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Estimating State of Charge for xEV batteries using 1D Convolutional
Neural Networks and Transfer Learning [0.4129225533930966]
We propose a one-dimensional convolutional neural network (CNN)-based state of charge estimation algorithm for electric vehicles.
The influence of different types of noises on the estimation capabilities of the CNN model has been studied.
The proposed method fares well in terms of estimation accuracy, learning speed and generalization capability.
arXiv Detail & Related papers (2020-11-02T09:27:03Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.