論文の概要: Apples to Apples: Establishing Comparability in Knowledge Generation Tasks Involving Users
- arxiv url: http://arxiv.org/abs/2412.16766v1
- Date: Sat, 21 Dec 2024 20:26:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:56:12.801980
- Title: Apples to Apples: Establishing Comparability in Knowledge Generation Tasks Involving Users
- Title(参考訳): AppleからAppleへ - ユーザを巻き込んだ知識生成タスクにおける比較可能性を確立する
- Authors: Christophe Debruyne, Ademar Crotti Junior,
- Abstract要約: 知識グラフ構築のための同様のプロトコルに関する2つの研究は報告されていない。
本稿ではまず,ユーザが比較ポイントを識別する研究を報告した各種研究について分析する。
このプロトコルは、KGCユーザスタディのより同等な評価に向けた重要なステップを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Knowledge graph construction (KGC) from (semi-)structured data is challenging, and facilitating user involvement is an issue frequently brought up within this community. We cannot deny the progress we have made with respect to (declarative) knowledge generation languages and tools to help build such mappings. However, it is surprising that no two studies report on similar protocols. This heterogeneity does not allow for a comparison of KGC languages, techniques, and tools. This paper first analyses the various studies that report on studies involving users to identify the points of comparison. These gaps include a lack of systematic consistency in task design, participant selection, and evaluation metrics. Moreover, there needs to be a systematic way of analyzing the data and reporting the findings, which is also lacking. We thus propose and introduce a user protocol for KGC designed to address this challenge. Where possible, we draw and take elements from the literature we deem fit for such a protocol. The protocol, as such, allows for the comparison of languages and techniques for the RDF Mapping Languages core functionality, which is covered by most of the other state-of-the-art techniques and tools. We also propose how the protocol can be amended to compare extensions (of RML). This protocol provides an important step towards a more comparable evaluation of KGC user studies.
- Abstract(参考訳): 半構造化データからの知識グラフ構築(KGC)は困難であり、ユーザの関与を促進することは、このコミュニティ内で頻繁に取り上げられる問題である。
このようなマッピング構築を支援するための(宣言的な)知識生成言語やツールに関する進歩を否定することはできない。
しかし、同様のプロトコルに関する2つの研究が報告されていないことは驚くべきことである。
この異種性は、KGC言語、技術、ツールの比較を許さない。
本稿ではまず,ユーザが比較ポイントを識別する研究を報告した各種研究について分析する。
これらのギャップには、タスク設計における体系的な一貫性の欠如、参加者の選択、評価メトリクスが含まれる。
さらに、データを分析し、結果を報告する体系的な方法が必要であり、これも欠落している。
そこで我々は,この課題に対処するために設計されたKGCのユーザプロトコルを提案し,導入する。
可能であれば、そのようなプロトコルに適した文献から要素を引いて取ります。
このプロトコルは、RDFマッピング言語の中核機能のための言語とテクニックの比較を可能にする。
また、このプロトコルを(RMLの)拡張と比較する方法についても提案する。
このプロトコルは、KGCユーザスタディのより同等な評価に向けた重要なステップを提供する。
関連論文リスト
- Towards Realistic Evaluation of Commit Message Generation by Matching Online and Offline Settings [77.20838441870151]
コミットメッセージ生成は、ソフトウェアエンジニアリングにおいて重要なタスクであり、正しく評価することが難しい。
オンラインメトリック - VCSに生成されたメッセージをコミットする前にユーザが導入する編集回数 - を使用して、オフライン実験用のメトリクスを選択します。
その結果,編集距離が最も高い相関を示すのに対し,BLEUやMETEORなどの類似度は低い相関を示すことがわかった。
論文 参考訳(メタデータ) (2024-10-15T20:32:07Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
我々は、差別的かつ生成的なKGCフレームワークと互換性のあるプラグイン・アンド・プレイ方式であるContextualization Distillation戦略を導入する。
提案手法は,大規模言語モデルに対して,コンパクトで構造的な三重項を文脈に富んだセグメントに変換するように指示することから始まる。
多様なデータセットとKGC技術にわたる総合的な評価は、我々のアプローチの有効性と適応性を強調している。
論文 参考訳(メタデータ) (2024-01-28T08:56:49Z) - Multivariate Time Series Anomaly Detection: Fancy Algorithms and Flawed
Evaluation Methodology [2.043517674271996]
本稿では、MVTS異常検出の文脈において、正常によいプロトコルが弱点を持つ可能性について論じる。
本稿では,PCA(Principal Components Analysis)に基づくシンプルな,かつ難しいベースラインを提案する。このベースラインは,最近のDeep Learning(DL)ベースのアプローチにおいて,一般的なベンチマークデータセットよりも驚くほど優れています。
論文 参考訳(メタデータ) (2023-08-24T20:24:12Z) - Idioms, Probing and Dangerous Things: Towards Structural Probing for
Idiomaticity in Vector Space [2.5288257442251107]
本研究の目的は, 埋め込まれた慣用的な情報がどのように構造的にコード化されているか, より深く知ることである。
静的 (GloVe) とコンテキスト埋め込み (BERT) の比較検討を行った。
実験の結果,慣用性がベクトルノルムに符号化されているかどうかの矛盾する証拠が得られた。
論文 参考訳(メタデータ) (2023-04-27T17:06:20Z) - RLIP: Relational Language-Image Pre-training for Human-Object
Interaction Detection [32.20132357830726]
言語画像事前学習(Language- Image Pre-Training、LIPR)は、エンティティと関係記述の両方を活用するコントラスト事前学習の戦略である。
RLIP-ParSeと呼ばれるこれらのコントリビューションの利点は、ゼロショット、少数ショット、微調整のHOI検出の改善、およびノイズアノテーションからの堅牢性の向上である。
論文 参考訳(メタデータ) (2022-09-05T07:50:54Z) - A Unified Strategy for Multilingual Grammatical Error Correction with
Pre-trained Cross-Lingual Language Model [100.67378875773495]
本稿では,多言語文法的誤り訂正のための汎用的かつ言語に依存しない戦略を提案する。
我々の手法は言語固有の操作を使わずに多様な並列GECデータを生成する。
NLPCC 2018 Task 2のデータセット(中国語)で最先端の結果を達成し、Falko-Merlin(ドイツ語)とRULEC-GEC(ロシア語)の競合性能を得る。
論文 参考訳(メタデータ) (2022-01-26T02:10:32Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer
Proxies [65.92826041406802]
本稿では,グラフ分類の観点から,プロキシベースのディープグラフメトリックラーニング手法を提案する。
複数のグローバルプロキシを利用して、各クラスの元のデータポイントを総括的に近似する。
本研究では, 近接関係を接地トラス・ラベルに従って調整する, 新たな逆ラベル伝搬アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-10-26T14:52:42Z) - GATE: Graph Attention Transformer Encoder for Cross-lingual Relation and
Event Extraction [107.8262586956778]
言語に依存しない文表現を学習するために、普遍的な依存解析を伴うグラフ畳み込みネットワーク(GCN)を導入する。
GCNは、長い範囲の依存関係を持つ単語をモデル化するのに苦労する。
そこで本研究では,構文的距離の異なる単語間の依存関係を学習するための自己認識機構を提案する。
論文 参考訳(メタデータ) (2020-10-06T20:30:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。