論文の概要: DCOR: Anomaly Detection in Attributed Networks via Dual Contrastive Learning Reconstruction
- arxiv url: http://arxiv.org/abs/2412.16788v1
- Date: Sat, 21 Dec 2024 22:02:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:59:16.235166
- Title: DCOR: Anomaly Detection in Attributed Networks via Dual Contrastive Learning Reconstruction
- Title(参考訳): DCOR:デュアルコントラスト学習再構成による分散ネットワークの異常検出
- Authors: Hossein Rafiee Zade, Hadi Zare, Mohsen Ghassemi Parsa, Hadi Davardoust, Meshkat Shariat Bagheri,
- Abstract要約: ネットワークベースのアプローチによる異常検出は、異常事象を特定する最も効率的な方法の1つである。
本稿では、再構成に基づく異常検出とコントラスト学習を統合した、属性付きネットワークの新しいアプローチDCORを紹介する。
- 参考スコア(独自算出の注目度): 5.382679710017696
- License:
- Abstract: Anomaly detection using a network-based approach is one of the most efficient ways to identify abnormal events such as fraud, security breaches, and system faults in a variety of applied domains. While most of the earlier works address the complex nature of graph-structured data and predefined anomalies, the impact of data attributes and emerging anomalies are often neglected. This paper introduces DCOR, a novel approach on attributed networks that integrates reconstruction-based anomaly detection with Contrastive Learning. Utilizing a Graph Neural Network (GNN) framework, DCOR contrasts the reconstructed adjacency and feature matrices from both the original and augmented graphs to detect subtle anomalies. We employed comprehensive experimental studies on benchmark datasets through standard evaluation measures. The results show that DCOR significantly outperforms state-of-the-art methods. Obtained results demonstrate the efficacy of proposed approach in attributed networks with the potential of uncovering new patterns of anomalies.
- Abstract(参考訳): ネットワークベースのアプローチによる異常検出は、さまざまな適用領域における不正、セキュリティ違反、システム障害などの異常事象を識別する最も効率的な方法の1つである。
初期の研究のほとんどは、グラフ構造化データと事前定義された異常の複雑な性質に対処するが、データ属性と出現する異常の影響は無視されることが多い。
本稿では、再構成に基づく異常検出とコントラスト学習を統合した、属性付きネットワークの新しいアプローチDCORを紹介する。
グラフニューラルネットワーク(GNN)フレームワークを利用することで、元のグラフと拡張グラフの両方から再構成された隣接性と特徴行列を比較して、微妙な異常を検出する。
標準評価尺度を用いて,ベンチマークデータセットに関する総合的な実験を行った。
その結果,DCORは最先端手法よりも優れていた。
得られた結果は, 属性付きネットワークにおける提案手法の有効性を示し, 異常の新たなパターンを明らかにする可能性を示した。
関連論文リスト
- Higher-order Structure Based Anomaly Detection on Attributed Networks [25.94747823510297]
本稿では,高次構造に基づく異常検出(GUIDE)手法を提案する。
我々は属性オートエンコーダと構造オートエンコーダを利用してノード属性と高階構造を再構成する。
また、隣接ノードの重要性を評価するために、グラフ注意層を設計する。
論文 参考訳(メタデータ) (2024-06-07T07:02:50Z) - SCALA: Sparsification-based Contrastive Learning for Anomaly Detection
on Attributed Networks [19.09775548036214]
属性付きネットワーク上の異常検出は、他の多数ノードと大きく異なる振る舞いを持つノードを見つけることを目的としている。
本稿では,ネットワークの埋め込み品質向上を目的とした,属性付きネットワーク上での異常検出のための新しいコントラスト学習フレームワークである textbfSCALA を提案する。
5つのベンチマーク実世界のデータセットで大規模な実験が行われ、結果はSCALAがすべてのベースライン手法を大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-01-03T08:51:18Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - ARISE: Graph Anomaly Detection on Attributed Networks via Substructure
Awareness [70.60721571429784]
サブ構造認識(ARISE)による属性付きネットワーク上の新しいグラフ異常検出フレームワークを提案する。
ARISEは、異常を識別するグラフのサブ構造に焦点を当てている。
実験により、ARISEは最先端の属性付きネットワーク異常検出(ANAD)アルゴリズムと比較して、検出性能が大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-28T12:17:40Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
補間型相関低減ネットワーク(ICRN)と呼ばれる新しいグラフコントラスト学習手法を提案する。
提案手法では,決定境界のマージンを大きくすることで,潜在特徴の識別能力を向上させる。
この2つの設定を組み合わせることで、豊富なラベル付きノードと稀に価値あるラベル付きノードから豊富な監視情報を抽出し、離散表現学習を行う。
論文 参考訳(メタデータ) (2022-06-06T14:26:34Z) - Unveiling Anomalous Edges and Nominal Connectivity of Attributed
Networks [53.56901624204265]
本研究では、相補的な強さを持つ2つの異なる定式化を用いて、属性グラフの異常なエッジを明らかにする。
まず、グラフデータマトリックスを低ランクとスパースコンポーネントに分解することで、パフォーマンスを著しく向上させる。
第2は、乱れのないグラフを頑健に復元することにより、第1のスコープを広げ、異常識別性能を高める。
論文 参考訳(メタデータ) (2021-04-17T20:00:40Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
本稿では, ニューラルネットワークを逆向きに訓練し, 異常なサンプルをよりよく認識するRCGAN(Regularized Cycle Consistent Generative Adversarial Network)を提案する。
実世界のデータと合成データの両方に対する実験結果から,我々のモデルが過去の異常検出ベンチマークにおいて有意かつ一貫した改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-01-18T03:35:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。