Technical Report: Towards Spatial Feature Regularization in Deep-Learning-Based Array-SAR Reconstruction
- URL: http://arxiv.org/abs/2412.16828v1
- Date: Sun, 22 Dec 2024 02:31:11 GMT
- Title: Technical Report: Towards Spatial Feature Regularization in Deep-Learning-Based Array-SAR Reconstruction
- Authors: Yu Ren, Xu Zhan, Yunqiao Hu, Xiangdong Ma, Liang Liu, Mou Wang, Jun Shi, Shunjun Wei, Tianjiao Zeng, Xiaoling Zhang,
- Abstract summary: Array synthetic aperture radar (Array-SAR) has demonstrated significant potential for high-quality 3D mapping.
Most studies rely on pixel-by-pixel reconstruction, neglecting spatial features like building structures, leading to artifacts such as holes and fragmented edges.
Our study integrates spatial feature regularization into DL-based Array-SAR reconstruction, addressing key questions: What spatial features are relevant in urban-area mapping?
Results show that spatial feature regularization significantly improves reconstruction accuracy, retrieves more complete building structures, and enhances robustness by reducing noise and outliers.
- Score: 8.808245551289994
- License:
- Abstract: Array synthetic aperture radar (Array-SAR), also known as tomographic SAR (TomoSAR), has demonstrated significant potential for high-quality 3D mapping, particularly in urban areas.While deep learning (DL) methods have recently shown strengths in reconstruction, most studies rely on pixel-by-pixel reconstruction, neglecting spatial features like building structures, leading to artifacts such as holes and fragmented edges. Spatial feature regularization, effective in traditional methods, remains underexplored in DL-based approaches. Our study integrates spatial feature regularization into DL-based Array-SAR reconstruction, addressing key questions: What spatial features are relevant in urban-area mapping? How can these features be effectively described, modeled, regularized, and incorporated into DL networks? The study comprises five phases: spatial feature description and modeling, regularization, feature-enhanced network design, evaluation, and discussions. Sharp edges and geometric shapes in urban scenes are analyzed as key features. An intra-slice and inter-slice strategy is proposed, using 2D slices as reconstruction units and fusing them into 3D scenes through parallel and serial fusion. Two computational frameworks-iterative reconstruction with enhancement and light reconstruction with enhancement-are designed, incorporating spatial feature modules into DL networks, leading to four specialized reconstruction networks. Using our urban building simulation dataset and two public datasets, six tests evaluate close-point resolution, structural integrity, and robustness in urban scenarios. Results show that spatial feature regularization significantly improves reconstruction accuracy, retrieves more complete building structures, and enhances robustness by reducing noise and outliers.
Related papers
- Exploiting Semantic Scene Reconstruction for Estimating Building Envelope Characteristics [6.382787013075262]
We propose BuildNet3D, a novel framework to estimate geometric building characteristics from 2D image inputs.
Our framework is evaluated on a range of complex building structures, demonstrating high accuracy and generalizability in estimating window-to-wall ratio and building footprint.
arXiv Detail & Related papers (2024-10-29T13:29:01Z) - Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - ALSTER: A Local Spatio-Temporal Expert for Online 3D Semantic
Reconstruction [62.599588577671796]
We propose an online 3D semantic segmentation method that incrementally reconstructs a 3D semantic map from a stream of RGB-D frames.
Unlike offline methods, ours is directly applicable to scenarios with real-time constraints, such as robotics or mixed reality.
arXiv Detail & Related papers (2023-11-29T20:30:18Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
We propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations.
Comprehensive experiments underscore our framework's superior generalization capabilities.
Our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients.
arXiv Detail & Related papers (2023-09-18T12:36:39Z) - FineRecon: Depth-aware Feed-forward Network for Detailed 3D
Reconstruction [13.157400338544177]
Recent works on 3D reconstruction from posed images have demonstrated that direct inference of scene-level 3D geometry is feasible using deep neural networks.
We propose three effective solutions for improving the fidelity of inference-based 3D reconstructions.
Our method, FineRecon, produces smooth and highly accurate reconstructions, showing significant improvements across multiple depth and 3D reconstruction metrics.
arXiv Detail & Related papers (2023-04-04T02:50:29Z) - Elevation Estimation-Driven Building 3D Reconstruction from Single-View
Remote Sensing Imagery [20.001807614214922]
Building 3D reconstruction from remote sensing images has a wide range of applications in smart cities, photogrammetry and other fields.
We propose an efficient DSM estimation-driven reconstruction framework (Building3D) to reconstruct 3D building models from the input single-view remote sensing image.
Our Building3D is rooted in the SFFDE network for building elevation prediction, synchronized with a building extraction network for building masks, and then sequentially performs point cloud reconstruction, surface reconstruction (or CityGML model reconstruction)
arXiv Detail & Related papers (2023-01-11T17:20:30Z) - End-to-End Multi-View Structure-from-Motion with Hypercorrelation
Volumes [7.99536002595393]
Deep learning techniques have been proposed to tackle this problem.
We improve on the state-of-the-art two-view structure-from-motion(SfM) approach.
We extend it to the general multi-view case and evaluate it on the complex benchmark dataset DTU.
arXiv Detail & Related papers (2022-09-14T20:58:44Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
Single-view 3D Mesh Reconstruction is a fundamental computer vision task that aims at recovering 3D shapes from single-view RGB images.
This paper tackles Single-view 3D Mesh Reconstruction, to study the model generalization on unseen categories.
We propose an end-to-end two-stage network, GenMesh, to break the category boundaries in reconstruction.
arXiv Detail & Related papers (2022-08-04T14:13:35Z) - DSP-SLAM: Object Oriented SLAM with Deep Shape Priors [16.867669408751507]
We propose an object-oriented SLAM system that builds a rich and accurate joint map of dense 3D models for foreground objects.
DSP-SLAM takes as input the 3D point cloud reconstructed by a feature-based SLAM system.
Our evaluation shows improvements in object pose and shape reconstruction with respect to recent deep prior-based reconstruction methods.
arXiv Detail & Related papers (2021-08-21T10:00:12Z) - UCLID-Net: Single View Reconstruction in Object Space [60.046383053211215]
We show that building a geometry preserving 3-dimensional latent space helps the network concurrently learn global shape regularities and local reasoning in the object coordinate space.
We demonstrate both on ShapeNet synthetic images, which are often used for benchmarking purposes, and on real-world images that our approach outperforms state-of-the-art ones.
arXiv Detail & Related papers (2020-06-06T09:15:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.