論文の概要: Human-Guided Image Generation for Expanding Small-Scale Training Image Datasets
- arxiv url: http://arxiv.org/abs/2412.16839v1
- Date: Sun, 22 Dec 2024 03:15:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:24.698388
- Title: Human-Guided Image Generation for Expanding Small-Scale Training Image Datasets
- Title(参考訳): 小型訓練用画像データセットの拡張のためのヒューマンガイド画像生成
- Authors: Changjian Chen, Fei Lv, Yalong Guan, Pengcheng Wang, Shengjie Yu, Yifan Zhang, Zhuo Tang,
- Abstract要約: 特定の実世界のアプリケーションにおけるコンピュータビジョンモデルの性能は、利用可能な少数の画像によって制限される。
より制御可能なデータセット拡張のためのヒューマンガイド画像生成法を提案する。
- 参考スコア(独自算出の注目度): 10.93687452351281
- License:
- Abstract: The performance of computer vision models in certain real-world applications (e.g., rare wildlife observation) is limited by the small number of available images.Expanding datasets using pre-trained generative models is an effective way to address this limitation. However, since the automatic generation process is uncontrollable, the generated images are usually limited in diversity, and some of them are undesired. In this paper, we propose a human-guided image generation method for more controllable dataset expansion. We develop a multi-modal projection method with theoretical guarantees to facilitate the exploration of both the original and generated images. Based on the exploration, users refine the prompts and re-generate images for better performance. Since directly refining the prompts is challenging for novice users, we develop a sample-level prompt refinement method to make it easier. With this method, users only need to provide sample-level feedback (e.g., which samples are undesired) to obtain better prompts. The effectiveness of our method is demonstrated through the quantitative evaluation of the multi-modal projection method, improved model performance in the case study for both classification and object detection tasks, and positive feedback from the experts.
- Abstract(参考訳): 特定の実世界のアプリケーション(例:希少な野生生物観察)におけるコンピュータビジョンモデルの性能は、利用可能な少数の画像によって制限されるが、事前学習された生成モデルを用いてデータセットを拡張することは、この制限に対処するための効果的な方法である。
しかし、自動生成プロセスは制御不能であるため、生成した画像は通常多様性に制限され、一部は望ましくない。
本稿では,より制御可能なデータセット拡張のためのヒューマンガイド画像生成手法を提案する。
我々は,原画像と生成画像の両方の探索を容易にするため,理論的に保証されたマルチモーダル投影法を開発した。
この探索に基づいて、ユーザはプロンプトを洗練し、より良いパフォーマンスのために画像を再生成する。
そこで本研究では,初期ユーザにとって直接的にプロンプトを精錬することが難しいため,サンプルレベルのプロンプト精錬法を開発した。
この方法では、ユーザーはより良いプロンプトを得るためにサンプルレベルのフィードバック(例えば、サンプルは望まない)を提供する必要がある。
本手法の有効性は,マルチモーダルプロジェクション法の定量的評価,分類および対象検出タスクのケーススタディにおけるモデル性能の向上,専門家からの肯定的なフィードバックによって実証された。
関連論文リスト
- A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
多様な条件生成タスクを処理するための、シンプルで統一されたフレームワークを導入します。
提案手法は,異なる推論時間サンプリング方式による多目的化を実現する。
我々のモデルは、非親密なアライメントや粗い条件付けのような追加機能をサポートしています。
論文 参考訳(メタデータ) (2024-10-15T09:41:43Z) - Self-Supervised Multi-Scale Network for Blind Image Deblurring via Alternating Optimization [12.082424048578753]
本稿では,遅延画像とぼやけたカーネルを共同で推定する,自己監督型マルチスケールブラインド画像デブロアリング手法を提案する。
複数スケールにわたる協調的推定により,計算集約的な粗大な伝播や画像の劣化を回避できる。
論文 参考訳(メタデータ) (2024-09-02T07:08:17Z) - Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
入力画像の複数の知覚的特徴を利用する新しいSR手法MPF-Netを提案する。
本稿では,MPFEモジュールを組み込んで,多様な知覚情報を抽出する手法を提案する。
また、モデルの学習能力を向上する対照的な正規化項(CR)も導入する。
論文 参考訳(メタデータ) (2023-05-26T07:35:49Z) - Deep Image Fingerprint: Towards Low Budget Synthetic Image Detection and Model Lineage Analysis [8.777277201807351]
本研究では,実際の画像と区別できない画像の新たな検出方法を提案する。
本手法は、既知の生成モデルから画像を検出し、微調整された生成モデル間の関係を確立することができる。
本手法は,Stable Diffusion とMidversa が生成した画像に対して,最先端の事前学習検出手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2023-03-19T20:31:38Z) - Improving Image Clustering through Sample Ranking and Its Application to
remote--sensing images [14.531733039462058]
本稿では,現在クラスタに属するクラスタの信頼性に基づいて,各クラスタ内のサンプルをランク付けする新しい手法を提案する。
そこで,本研究では,人口密度の密集した地域にあるか否かに基づいて,現在のクラスタに属するサンプルの確率を計算する手法を開発した。
本手法はリモートセンシング画像に効果的に適用可能であることを示す。
論文 参考訳(メタデータ) (2022-09-26T12:10:02Z) - Meta Internal Learning [88.68276505511922]
単一画像生成のための内部学習は、単一の画像に基づいて新しい画像を生成するようにジェネレータを訓練するフレームワークである。
本稿では,サンプル画像の内部統計をより効果的にモデル化するために,画像集合のトレーニングを可能にするメタラーニング手法を提案する。
以上の結果から, 得られたモデルは, 多数の共通画像アプリケーションにおいて, シングルイメージのGANと同程度に適していることがわかった。
論文 参考訳(メタデータ) (2021-10-06T16:27:38Z) - Improved Techniques for Training Single-Image GANs [44.251222212306764]
生成モデルは、大きなデータセットからではなく、単一のイメージから学習することができる。
1つのサンプルのみから現実的な画像を生成することができるモデルを訓練するためのベストプラクティスを提案する。
私たちのモデルはトレーニングの最大6倍高速で、パラメータが少なく、画像のグローバルな構造をよりよく捉えることができます。
論文 参考訳(メタデータ) (2020-03-25T17:33:25Z) - Informative Sample Mining Network for Multi-Domain Image-to-Image
Translation [101.01649070998532]
本稿では,画像から画像への翻訳作業において,サンプル選択戦略の改善が有効であることを示す。
本稿では,サンプルの硬さを抑えつつ,サンプルの硬さを抑えるための新しい多段階サンプルトレーニング手法を提案する。
論文 参考訳(メタデータ) (2020-01-05T05:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。