Diffusion-Based Approaches in Medical Image Generation and Analysis
- URL: http://arxiv.org/abs/2412.16860v1
- Date: Sun, 22 Dec 2024 05:02:05 GMT
- Title: Diffusion-Based Approaches in Medical Image Generation and Analysis
- Authors: Abdullah al Nomaan Nafi, Md. Alamgir Hossain, Rakib Hossain Rifat, Md Mahabub Uz Zaman, Md Manjurul Ahsan, Shivakumar Raman,
- Abstract summary: Data scarcity in medical imaging poses significant challenges due to privacy concerns.
Questions remain about the performance of convolutional neural network (CNN) models on original and synthetic datasets.
In this study, we investigated the effectiveness of diffusion models for generating synthetic medical images to train CNNs in three domains.
- Score: 0.7834170106487724
- License:
- Abstract: Data scarcity in medical imaging poses significant challenges due to privacy concerns. Diffusion models, a recent generative modeling technique, offer a potential solution by generating synthetic and realistic data. However, questions remain about the performance of convolutional neural network (CNN) models on original and synthetic datasets. If diffusion-generated samples can help CNN models perform comparably to those trained on original datasets, reliance on patient-specific data for training CNNs might be reduced. In this study, we investigated the effectiveness of diffusion models for generating synthetic medical images to train CNNs in three domains: Brain Tumor MRI, Acute Lymphoblastic Leukemia (ALL), and SARS-CoV-2 CT scans. A diffusion model was trained to generate synthetic datasets for each domain. Pre-trained CNN architectures were then trained on these synthetic datasets and evaluated on unseen real data. All three datasets achieved promising classification performance using CNNs trained on synthetic data. Local Interpretable Model-Agnostic Explanations (LIME) analysis revealed that the models focused on relevant image features for classification. This study demonstrates the potential of diffusion models to generate synthetic medical images for training CNNs in medical image analysis.
Related papers
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Scaling by training on large datasets has been shown to enhance the quality and fidelity of image generation and manipulation with diffusion models.
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
Our results demonstrate significant performance gains in various scenarios when combined with different fine-tuning schemes.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Embryo 2.0: Merging Synthetic and Real Data for Advanced AI Predictions [69.07284335967019]
We train two generative models using two datasets, one created and made publicly available, and one existing public dataset.
We generate synthetic embryo images at various cell stages, including 2-cell, 4-cell, 8-cell, morula, and blastocyst.
These were combined with real images to train classification models for embryo cell stage prediction.
arXiv Detail & Related papers (2024-12-02T08:24:49Z) - Generative artificial intelligence in ophthalmology: multimodal retinal images for the diagnosis of Alzheimer's disease with convolutional neural networks [0.0]
This study aims to predict Amyloid Positron Emission Tomography (AmyloidPET) status with multimodal retinal imaging and convolutional neural networks (CNNs)
Denoising Diffusion Probabilistic Models (DDPMs) were trained to generate synthetic images.
Unimodal CNNs were pretrained on synthetic data and finetuned on real data or trained solely on real data.
arXiv Detail & Related papers (2024-06-26T10:49:26Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - Investigating Data Memorization in 3D Latent Diffusion Models for
Medical Image Synthesis [0.6382686594288781]
We assess the memorization capacity of 3D latent diffusion models on photon-counting coronary computed tomography angiography and knee magnetic resonance imaging datasets.
Our results suggest that such latent diffusion models indeed memorize training data, and there is a dire need for devising strategies to mitigate memorization.
arXiv Detail & Related papers (2023-07-03T16:39:28Z) - Brain tumor segmentation using synthetic MR images -- A comparison of
GANs and diffusion models [0.0]
Generative AI models, such as generative adversarial networks (GANs) and diffusion models, can today produce very realistic synthetic images.
We show that segmentation networks trained on synthetic images reach Dice scores that are 80% - 90% of Dice scores when training with real images.
Our conclusion is that sharing synthetic medical images is a viable option to sharing real images, but that further work is required.
arXiv Detail & Related papers (2023-06-05T15:56:30Z) - Brain Imaging Generation with Latent Diffusion Models [2.200720122706913]
In this study, we explore using Latent Diffusion Models to generate synthetic images from high-resolution 3D brain images.
We found that our models created realistic data, and we could use the conditioning variables to control the data generation effectively.
arXiv Detail & Related papers (2022-09-15T09:16:21Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.