論文の概要: A Parameter-Efficient Quantum Anomaly Detection Method on a Superconducting Quantum Processor
- arxiv url: http://arxiv.org/abs/2412.16867v1
- Date: Sun, 22 Dec 2024 05:36:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:18.788986
- Title: A Parameter-Efficient Quantum Anomaly Detection Method on a Superconducting Quantum Processor
- Title(参考訳): 超伝導量子プロセッサにおけるパラメータ効率の良い量子異常検出法
- Authors: Maida Wang, Jinyang Jiang, Peter V. Coveney,
- Abstract要約: 量子支援ベクトルデータ記述(QSVDD)と呼ばれる新しい量子機械学習手法を提案する。
QSVDDは従来のモデルと比較してパラメータ効率と精度の両方を達成することを目的としている。
超伝導量子プロセッサ上での異常検出のための量子機械学習手法の最初の実装を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum machine learning has gained attention for its potential to address computational challenges. However, whether those algorithms can effectively solve practical problems and outperform their classical counterparts, especially on current quantum hardware, remains a critical question. In this work, we propose a novel quantum machine learning method, called Quantum Support Vector Data Description (QSVDD), for practical anomaly detection, which aims to achieve both parameter efficiency and superior accuracy compared to classical models. Emulation results indicate that QSVDD demonstrates favourable recognition capabilities compared to classical baselines, achieving an average accuracy of over 90% on benchmarks with significantly fewer trainable parameters. Theoretical analysis confirms that QSVDD has a comparable expressivity to classical counterparts while requiring only a fraction of the parameters. Furthermore, we demonstrate the first implementation of a quantum machine learning method for anomaly detection on a superconducting quantum processor. Specifically, we achieve an accuracy of over 80% with only 16 parameters on the device, providing initial evidence of QSVDD's practical viability in the noisy intermediate-scale quantum era and highlighting its significant reduction in parameter requirements.
- Abstract(参考訳): 量子機械学習は、計算課題に対処する可能性について注目を集めている。
しかし、これらのアルゴリズムが現実的な問題を効果的に解決し、特に現在の量子ハードウェアにおいて、従来のアルゴリズムよりも優れているかどうかは、依然として重要な問題である。
本研究では,量子支援ベクトルデータ記述法(Quantum Support Vector Data Description, QSVDD)と呼ばれる新しい量子機械学習手法を提案する。
シミュレーションの結果,QSVDDは古典的ベースラインに比べて良好な認識能力を示し,トレーニング可能なパラメータが著しく少ないベンチマークで平均90%以上の精度を実現していることがわかった。
理論的解析により、QSVDDは古典的な表現力に匹敵するが、パラメータのごく一部しか必要としないことが明らかとなった。
さらに,超伝導量子プロセッサ上での異常検出のための量子機械学習手法の最初の実装を示す。
具体的には、デバイス上の16個のパラメータだけで80%以上の精度を達成し、ノイズの多い中間スケール量子時代におけるQSVDDの実用可能性の最初の証拠を提供し、パラメータ要求の大幅な削減を強調した。
関連論文リスト
- Unsupervised Quantum Anomaly Detection on Noisy Quantum Processors [1.2325897339438878]
本稿では,一クラス支援ベクトルマシン(OCSVM)アルゴリズムの一般化特性の系統的解析を行う。
結果は理論的にシミュレートされ、トラップイオンおよび超伝導量子プロセッサ上で実験的に検証された。
論文 参考訳(メタデータ) (2024-11-25T22:42:38Z) - Parametrized Energy-Efficient Quantum Kernels for Network Service Fault Diagnosis [0.49157446832511503]
その結果,従来の手法に比べて性能が向上し,性能が向上した。
量子カーネルの実験的検証はIBMの超伝導量子コンピュータであるIBM-Kawasakiを用いて行われた。
論文 参考訳(メタデータ) (2024-05-15T23:06:47Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
新しいQuantum Error Mitigation(QEM)技術では、Fizzy C-Meansクラスタリングを使用して測定エラーパターンを特定できる。
実 NISQ 5-qubit 量子プロセッサのサブセットとして得られた 2-qubit レジスタ上で,この手法の原理的検証を報告する。
我々は、FCMベースのQEM技術により、単一および2ビットゲートベースの量子回路の期待値が合理的に改善できることを実証した。
論文 参考訳(メタデータ) (2024-02-02T14:02:45Z) - Exploring Unsupervised Anomaly Detection with Quantum Boltzmann Machines
in Fraud Detection [3.955274213382716]
EDR(Restricted Detection and Response)における異常検出は、大企業のサイバーセキュリティプログラムにおいて重要な課題である。
この問題に対する古典的な機械学習アプローチは存在するが、悪質な異常と悪質な異常を区別する際の不満足なパフォーマンスをしばしば示している。
現在使われている機械学習技術よりも優れた一般化を実現するための有望なアプローチは量子生成モデルである。
論文 参考訳(メタデータ) (2023-06-08T07:36:01Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - A preprocessing perspective for quantum machine learning classification
advantage using NISQ algorithms [0.0]
変分量子アルゴリズム(VQA)は,LDA法とバランスの取れた精度で性能が向上したことを示す。
現在の量子コンピュータはノイズが多く、テストする量子ビットは少ないため、QML法の現在の量子的利点と潜在的な量子的優位性を実証することは困難である。
論文 参考訳(メタデータ) (2022-08-28T16:58:37Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
本稿では,量子状態の知識を必要とせず,量子回路の可換性を検証する回路指向対称性検証を提案する。
特に、従来の量子領域形式を回路指向安定化器に一般化するフーリエ時間安定化器(STS)手法を提案する。
論文 参考訳(メタデータ) (2021-12-27T21:15:35Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
モルマー・ソレンセンエンタングゲートの誤校正パラメータの系統的摂動展開について検討した。
我々はゲート進化演算子を計算し、関連する鍵特性を得る。
我々は、捕捉されたイオン量子プロセッサにおける測定値に対して、モデルからの予測をベンチマークすることで検証する。
論文 参考訳(メタデータ) (2021-12-10T10:56:16Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。