論文の概要: Preventing Non-intrusive Load Monitoring Privacy Invasion: A Precise Adversarial Attack Scheme for Networked Smart Meters
- arxiv url: http://arxiv.org/abs/2412.16893v1
- Date: Sun, 22 Dec 2024 07:06:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:05.663542
- Title: Preventing Non-intrusive Load Monitoring Privacy Invasion: A Precise Adversarial Attack Scheme for Networked Smart Meters
- Title(参考訳): 非侵入的負荷監視プライバシ侵入を防ぐ:ネットワーク型スマートメータの高精度攻撃方式
- Authors: Jialing He, Jiacheng Wang, Ning Wang, Shangwei Guo, Liehuang Zhu, Dusit Niyato, Tao Xiang,
- Abstract要約: 本稿では,敵攻撃に基づく革新的な手法を提案する。
このスキームは、NILMモデルがアプライアンスレベルのプライバシに違反するのを効果的に防ぎ、ユーザの正確な請求計算を確実にする。
提案手法はトランスファービリティを示し,他の様々なNILMモデルに適用可能な1つのターゲットモデルから発生する摂動信号を生成する。
- 参考スコア(独自算出の注目度): 99.90150979732641
- License:
- Abstract: Smart grid, through networked smart meters employing the non-intrusive load monitoring (NILM) technique, can considerably discern the usage patterns of residential appliances. However, this technique also incurs privacy leakage. To address this issue, we propose an innovative scheme based on adversarial attack in this paper. The scheme effectively prevents NILM models from violating appliance-level privacy, while also ensuring accurate billing calculation for users. To achieve this objective, we overcome two primary challenges. First, as NILM models fall under the category of time-series regression models, direct application of traditional adversarial attacks designed for classification tasks is not feasible. To tackle this issue, we formulate a novel adversarial attack problem tailored specifically for NILM and providing a theoretical foundation for utilizing the Jacobian of the NILM model to generate imperceptible perturbations. Leveraging the Jacobian, our scheme can produce perturbations, which effectively misleads the signal prediction of NILM models to safeguard users' appliance-level privacy. The second challenge pertains to fundamental utility requirements, where existing adversarial attack schemes struggle to achieve accurate billing calculation for users. To handle this problem, we introduce an additional constraint, mandating that the sum of added perturbations within a billing period must be precisely zero. Experimental validation on real-world power datasets REDD and UK-DALE demonstrates the efficacy of our proposed solutions, which can significantly amplify the discrepancy between the output of the targeted NILM model and the actual power signal of appliances, and enable accurate billing at the same time. Additionally, our solutions exhibit transferability, making the generated perturbation signal from one target model applicable to other diverse NILM models.
- Abstract(参考訳): 非侵入負荷監視(NILM)技術を用いたネットワーク型スマートメーターによるスマートグリッドは、住宅機器の使用パターンを著しく識別することができる。
しかし、この技術はプライバシーの漏洩も引き起こす。
この問題に対処するため,本稿では,敵攻撃に基づく革新的なスキームを提案する。
このスキームは、NILMモデルがアプライアンスレベルのプライバシに違反するのを効果的に防ぎ、ユーザの正確な請求計算を確実にする。
この目的を達成するために、我々は2つの主要な課題を克服する。
第一に、NILMモデルは時系列回帰モデルに分類されるため、分類タスク用に設計された従来の敵攻撃を直接適用することは不可能である。
この問題に対処するために、NILMに特化して設計された新しい敵攻撃問題を定式化し、NILMモデルのヤコビアンを利用して知覚不能な摂動を生成する理論的基礎を提供する。
ヤコビアンを活用すれば、当社のスキームは摂動を発生させ、NILMモデルの信号予測を効果的に誤解させ、ユーザのアプライアンスレベルのプライバシを保護する。
第2の課題は、既存の敵攻撃方式がユーザに対する正確な請求計算を達成するのに苦労する、基本的なユーティリティ要件に関するものである。
この問題に対処するために、請求期間内に追加される摂動の和が正確にゼロでなければならないという追加の制約を導入する。
実世界の電力データセット(REDD)とUK-DALE(UK-DALE)の実験的検証により提案手法の有効性が実証され,ターゲットNILMモデルの出力とアプライアンスの実際の電力信号との相違を著しく増幅し,同時に正確な請求を可能にする。
さらに,本手法は移動可能性を示し,他の様々なNILMモデルに適用可能な1つのターゲットモデルから発生する摂動信号を生成する。
関連論文リスト
- Benchmarking Active Learning for NILM [2.896640219222859]
非侵入負荷モニタリング(NILM)は、家電固有の用途に家庭の電力消費を分散させることに焦点を当てている。
多くの高度なNILM法は、通常大量のラベル付きアプライアンスデータを必要とするニューラルネットワークに基づいている。
限られた住宅に家電モニターを選択的に設置するための能動的学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-24T12:22:59Z) - Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
本稿では,セグメント・アプライス・モデル(SAM)から微調整した様々な下流モデルに対する敵攻撃の可能性について検討する。
未知のデータセットを微調整したモデルに対する敵攻撃の有効性を高めるために,ユニバーサルメタ初期化(UMI)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T15:04:04Z) - Federated Sequence-to-Sequence Learning for Load Disaggregation from Unbalanced Low-Resolution Smart Meter Data [5.460776507522276]
非侵入負荷モニタリング(NILM)は、エネルギー意識を高め、エネルギープログラム設計のための貴重な洞察を提供する。
既存のNILM法は、しばしば高サンプリング複雑な信号データを取得するための特殊な装置に依存している。
そこで本研究では,12種類の機器の負荷分散を実現するために,容易にアクセス可能な気象データを用いた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:04:49Z) - Noisy Neighbors: Efficient membership inference attacks against LLMs [2.666596421430287]
本稿では,組込み空間に雑音を付加することにより,対象試料のテクストノイズを発生させる効率的な手法を提案する。
提案手法はシャドウモデルの有効性と密に一致し,実際のプライバシー監査シナリオにおけるユーザビリティを示す。
論文 参考訳(メタデータ) (2024-06-24T12:02:20Z) - RigorLLM: Resilient Guardrails for Large Language Models against Undesired Content [62.685566387625975]
現在の緩和戦略は効果はあるものの、敵の攻撃下では弾力性がない。
本稿では,大規模言語モデルのための弾力性ガードレール(RigorLLM)について紹介する。
論文 参考訳(メタデータ) (2024-03-19T07:25:02Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - On the Sensitivity of Deep Load Disaggregation to Adversarial Attacks [2.389598109913753]
敵対的攻撃は、コンピュータビジョンや音声認識のような領域において重大な脅威であることが証明されている。
本稿では,FGSM(Fast Gradient Sign Method)を用いて2つのCNNベースのNILMベースラインに入力シーケンスを摂動させる手法を提案する。
以上の結果から,これらのモデルの脆弱性,特にF1スコアの平均20%低下を示すS2Pモデルが示唆された。
論文 参考訳(メタデータ) (2023-07-14T13:10:01Z) - Reversible Quantization Index Modulation for Static Deep Neural Network
Watermarking [57.96787187733302]
可逆的データ隠蔽法(RDH)は潜在的な解決策を提供するが、既存のアプローチはユーザビリティ、キャパシティ、忠実性の面で弱点に悩まされている。
量子化指数変調(QIM)を用いたRDHに基づく静的DNN透かし手法を提案する。
提案手法は,透かし埋め込みのための1次元量化器に基づく新しい手法を取り入れたものである。
論文 参考訳(メタデータ) (2023-05-29T04:39:17Z) - Mixture GAN For Modulation Classification Resiliency Against Adversarial
Attacks [55.92475932732775]
本稿では,GANをベースとした新たな生成逆ネットワーク(Generative Adversarial Network, GAN)を提案する。
GANベースの目的は、DNNベースの分類器に入力する前に、敵の攻撃例を排除することである。
シミュレーションの結果,DNNをベースとしたAMCの精度が約81%に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-29T22:30:32Z) - A Federated Learning Framework for Non-Intrusive Load Monitoring [0.1657441317977376]
非侵入負荷モニタリング (NILM) は, 家庭用電力消費の総読み出しを家電製品に分解することを目的としている。
NILMデータを所有しているユーティリティやDNO間のデータ連携はますます重要になっている。
フェデレーションラーニング(FL)によるNILMのパフォーマンス向上のためのフレームワークが構築されました。
論文 参考訳(メタデータ) (2021-04-04T14:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。