Transverse orbital angular momentum and polarization entangled spatiotemporal structured light
- URL: http://arxiv.org/abs/2412.16896v3
- Date: Fri, 07 Feb 2025 04:23:53 GMT
- Title: Transverse orbital angular momentum and polarization entangled spatiotemporal structured light
- Authors: Hsiao-Chih Huang, Kefu Mu, Hui Min Leung, Chen-Ting Liao,
- Abstract summary: Intra-system entanglement occurs between non-separable modes within the same system.
We develop methods to create and characterize a novel family of t-OAM and entangled polarization structured light.
- Score: 0.0
- License:
- Abstract: Intra-system entanglement occurs between non-separable modes within the same system. For optical systems, the various degrees of freedom of light represent different modes, and the potential use of light to create higher dimensional classical entangle states offers a promising potential to drive new technological developments. In this work, we present experimental results demonstrating the orthogonality between transverse orbital angular momentum (t-OAM) of different spatiotemporal topological charges, a previously unverified property of t-OAM. Based on those results, we developed methods to create and characterize a novel family of t-OAM and polarization entangled spatiotemporal structured light. We further provide theoretical analysis to support our study of the entanglement between those modes. By demonstrating the feasibility of leveraging t-OAM as a new family of modes for classical entanglement, our work represents a new advancement towards higher dimensional classical entanglement strategies.
Related papers
- Formation and Controlling of Optical Hopfions in High Harmonic Generation [0.0]
Toroidal vortex is a novel and exotic structured light with potential applications in photonic topology and quantum information.
We show that the spatial distribution of harmonic spectra reveal unique structures, which are kinds of high-order topological toroidal vortex.
arXiv Detail & Related papers (2024-10-08T13:33:29Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Quantum theory of orbital angular momentum in spatiotemporal optical vortices [0.0]
STOVs are structured electromagnetic fields propagating in free space with phase singularities in the space-time domain.
We develop a quantum theory for STOVs with an arbitrary tilt, extending beyond the paraxial limit.
Our findings represent a step towards the exploitation of quantum effects of structured light for various applications.
arXiv Detail & Related papers (2024-03-02T01:03:00Z) - Optical Feedback Loop in Paraxial Fluids of Light: A Gate to new
phenomena in analogue physical simulations [0.3069335774032178]
Paraxial Fluids of Light are emerging as promising platforms for the simulation and exploration of quantum-like phenomena.
We present a novel experimental approach to solve this limitation in the form of an optical feedback loop.
arXiv Detail & Related papers (2023-12-19T17:03:35Z) - Two dimensional momentum state lattices [0.0]
Building on the development of momentum state lattices (MSLs) over the past decade, we introduce a simple extension of this technique to higher dimensions.
MSLs have enabled the realization of tight-binding models with tunable disorder, gauge fields, non-Hermiticity, and other features.
We discuss many of the direct extensions to this model, including the introduction of disorder and non-Hermiticity, which will enable the exploration of new transport and localization phenomena in higher dimensions.
arXiv Detail & Related papers (2023-05-29T09:57:56Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Revisiting GANs by Best-Response Constraint: Perspective, Methodology,
and Application [49.66088514485446]
Best-Response Constraint (BRC) is a general learning framework to explicitly formulate the potential dependency of the generator on the discriminator.
We show that even with different motivations and formulations, a variety of existing GANs ALL can be uniformly improved by our flexible BRC methodology.
arXiv Detail & Related papers (2022-05-20T12:42:41Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Enhancement of quantum correlations and geometric phase for a driven
bipartite quantum system in a structured environment [77.34726150561087]
We study the role of driving in an initial maximally entangled state evolving under a structured environment.
This knowledge can aid the search for physical setups that best retain quantum properties under dissipative dynamics.
arXiv Detail & Related papers (2021-03-18T21:11:37Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Integrated Structured Light Architectures [4.027878855696664]
versatility of light underpins outstanding optical phenomena where both geometrical and topological states of light dictate how matter will respond or display.
Light possesses multiple degrees of freedom such as amplitude, linear spin, angular, and orbital angular momenta.
We describe a foundational demonstration that examines a laser architecture offering integrated structural field control and programmability.
arXiv Detail & Related papers (2020-03-31T17:47:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.