Quantum theory of orbital angular momentum in spatiotemporal optical vortices
- URL: http://arxiv.org/abs/2403.01054v2
- Date: Sun, 24 Mar 2024 19:02:09 GMT
- Title: Quantum theory of orbital angular momentum in spatiotemporal optical vortices
- Authors: Pronoy Das, Sathwik Bharadwaj, Zubin Jacob,
- Abstract summary: STOVs are structured electromagnetic fields propagating in free space with phase singularities in the space-time domain.
We develop a quantum theory for STOVs with an arbitrary tilt, extending beyond the paraxial limit.
Our findings represent a step towards the exploitation of quantum effects of structured light for various applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatiotemporal Optical Vortices (STOVs) are structured electromagnetic fields propagating in free space with phase singularities in the space-time domain. Depending on the tilt of the helical phase front, STOVs can carry both longitudinal and transverse orbital angular momentum (OAM). Although STOVs have gained significant interest in the recent years, the current understanding is limited to the semi-classical picture. Here, we develop a quantum theory for STOVs with an arbitrary tilt, extending beyond the paraxial limit. We demonstrate that quantum STOV states, such as Fock and coherent twisted photon pulses, display non-vanishing longitudinal OAM fluctuations that are absent in conventional monochromatic twisted pulses. We show that these quantum fluctuations exhibit a unique texture, i.e. a spatial distribution which can be used to experimentally isolate these quantum effects. Our findings represent a step towards the exploitation of quantum effects of structured light for various applications such as OAM-based encoding protocols and platforms to explore novel light-matter interaction in 2D material systems.
Related papers
- Cavity-Vacuum-Induced Chiral Spin Liquids in Kagome Lattices: Tuning and Probing Topological Quantum Phases via Cavity Quantum Electrodynamics [4.696206083367064]
Topological phases in frustrated quantum magnetic systems have captivated researchers for decades.
The chiral spin liquid (CSL) is one of the most compelling examples.
We show that CSLs can emerge in a kagome lattice driven by vacuum quantum fluctuations within a single-mode chiral cavity.
arXiv Detail & Related papers (2024-11-12T19:00:18Z) - Quantum erasure based on phase structure [9.313260008681723]
We introduce a theoretical framework for quantum erasure that focusses on the phase structure and demonstrate it experimentally.
We employ a Mach-Zehnder interferometer (MZI) where a first-order spiral phase plate (SPP) is integrated into one of its arms.
arXiv Detail & Related papers (2024-05-18T06:20:13Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum structured light: Non-classical spin texture of twisted
single-photon pulses [8.19841678851784]
A framework for the quantum density of spin and OAM for single-photons remains elusive.
We develop a theoretical framework and put forth the concept of quantum structured light for space-time wavepackets at the single-photon level.
Our work paves the way for quantum spin-OAM physics in twisted single photon pulses.
arXiv Detail & Related papers (2021-02-26T01:08:57Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.