論文の概要: Verifying the Causes of Adversarial Examples
- arxiv url: http://arxiv.org/abs/2010.09633v1
- Date: Mon, 19 Oct 2020 16:17:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-05 22:44:45.823246
- Title: Verifying the Causes of Adversarial Examples
- Title(参考訳): 逆例の原因の検証
- Authors: Honglin Li, Yifei Fan, Frieder Ganz, Anthony Yezzi, Payam Barnaghi
- Abstract要約: ニューラルネットワークのロバスト性は、入力に対するほとんど知覚できない摂動を含む敵の例によって挑戦される。
本稿では,敵対的事例の潜在的な原因の収集と,慎重に設計された制御実験による検証(あるいは部分的に検証)を行う。
実験の結果, 幾何学的要因はより直接的な原因であり, 統計的要因は現象を増大させることが明らかとなった。
- 参考スコア(独自算出の注目度): 5.381050729919025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The robustness of neural networks is challenged by adversarial examples that
contain almost imperceptible perturbations to inputs, which mislead a
classifier to incorrect outputs in high confidence. Limited by the extreme
difficulty in examining a high-dimensional image space thoroughly, research on
explaining and justifying the causes of adversarial examples falls behind
studies on attacks and defenses. In this paper, we present a collection of
potential causes of adversarial examples and verify (or partially verify) them
through carefully-designed controlled experiments. The major causes of
adversarial examples include model linearity, one-sum constraint, and geometry
of the categories. To control the effect of those causes, multiple techniques
are applied such as $L_2$ normalization, replacement of loss functions,
construction of reference datasets, and novel models using multi-layer
perceptron probabilistic neural networks (MLP-PNN) and density estimation (DE).
Our experiment results show that geometric factors tend to be more direct
causes and statistical factors magnify the phenomenon, especially for assigning
high prediction confidence. We believe this paper will inspire more studies to
rigorously investigate the root causes of adversarial examples, which in turn
provide useful guidance on designing more robust models.
- Abstract(参考訳): ニューラルネットワークのロバスト性は、入力に対するほとんど知覚不能な摂動を含む敵の例によって挑戦され、高い信頼度で出力を誤ったものと誤認する。
高次元画像空間を徹底的に調べることの難しさに制限され、敵対的な例の原因の説明と正当化の研究は、攻撃と防御の研究の背後にある。
本稿では,敵対的事例の潜在的な原因の収集と,慎重に設計された制御実験による検証(あるいは部分的に検証)を行う。
逆行例の主な原因は、モデル線形性、単和制約、圏の幾何学である。
これらの原因の影響を制御するために、$L_2$正規化、損失関数の置換、参照データセットの構築、多層パーセプトロン確率ニューラルネットワーク(MLP-PNN)と密度推定(DE)を用いた新しいモデルなど、複数の手法が適用される。
実験の結果,幾何学的要因はより直接的な原因であり,統計的要因は現象を増大させる傾向を示し,特に高い予測信頼性を付与する。
本稿は,より強固なモデルを設計する上で有用なガイダンスを提供するため,逆行例の根本原因を厳格に調査するためのさらなる研究を刺激すると考えている。
関連論文リスト
- Missed Causes and Ambiguous Effects: Counterfactuals Pose Challenges for Interpreting Neural Networks [14.407025310553225]
解釈可能性の研究は、当然のことながら因果関係の反事実理論を採っている。
反事実理論は、我々の発見を具体的かつ予測可能な方法でバイアスする問題を持っている。
本稿では,これらの課題が解釈可能性研究者に与える影響について論じる。
論文 参考訳(メタデータ) (2024-07-05T17:53:03Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Demystifying Causal Features on Adversarial Examples and Causal
Inoculation for Robust Network by Adversarial Instrumental Variable
Regression [32.727673706238086]
本稿では、因果的な観点から、敵の訓練を受けたネットワークにおける予期せぬ脆弱性を掘り下げる手法を提案する。
展開することで,不偏環境下での敵予測の因果関係を推定する。
その結果, 推定因果関係は, 正解率の正解率と高い相関関係があることが示唆された。
論文 参考訳(メタデータ) (2023-03-02T08:18:22Z) - Causal Triplet: An Open Challenge for Intervention-centric Causal
Representation Learning [98.78136504619539]
Causal Tripletは、視覚的に複雑なシーンを特徴とする因果表現学習ベンチマークである。
この結果から,不整合表現やオブジェクト中心表現の知識によって構築されたモデルが,分散表現よりもはるかに優れていることを示す。
論文 参考訳(メタデータ) (2023-01-12T17:43:38Z) - Quantify the Causes of Causal Emergence: Critical Conditions of
Uncertainty and Asymmetry in Causal Structure [0.5372002358734439]
統計的および情報理論に基づく因果関係の調査は、大規模モデルに興味深い、価値のある課題を提起している。
本稿では,その発生の理論的制約として,因果関係の数値的条件を評価するための枠組みを提案する。
論文 参考訳(メタデータ) (2022-12-03T06:35:54Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
本稿では,観測データから因果表現を学習するために,仮説因果グラフに基づいて相互情報量で学習手順を規則化することを提案する。
この最適化は、因果性に着想を得た学習がサンプルの複雑さを減らし、一般化能力を向上させるという理論的保証を導出する反ファクト的損失を伴う。
論文 参考訳(メタデータ) (2022-02-17T00:38:35Z) - A Frequency Perspective of Adversarial Robustness [72.48178241090149]
理論的および経験的知見を参考に,周波数に基づく対向例の理解について述べる。
分析の結果,逆転例は高周波でも低周波成分でもないが,単にデータセット依存であることがわかった。
本稿では、一般に観測される精度対ロバスト性トレードオフの周波数に基づく説明法を提案する。
論文 参考訳(メタデータ) (2021-10-26T19:12:34Z) - Pruning in the Face of Adversaries [0.0]
ニューラルネットワークのプルーニングがL-0,L-2,L-infinity攻撃に対する対向的ロバスト性に及ぼす影響を評価する。
その結果,ニューラルネットワークのプルーニングと対向ロバスト性は相互に排他的ではないことが確認された。
分析を敵のシナリオに付加的な仮定を取り入れた状況にまで拡張し、状況によって異なる戦略が最適であることを示す。
論文 参考訳(メタデータ) (2021-08-19T09:06:16Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z) - On the Transferability of Adversarial Attacksagainst Neural Text
Classifier [121.6758865857686]
テキスト分類モデルの逆例の転送可能性について検討する。
本稿では,ほとんどすべての既存モデルを騙すために,敵の例を誘導できるモデル群を見つける遺伝的アルゴリズムを提案する。
これらの逆例からモデル診断に使用できる単語置換規則を導出する。
論文 参考訳(メタデータ) (2020-11-17T10:45:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。