論文の概要: A Career Interview Dialogue System using Large Language Model-based Dynamic Slot Generation
- arxiv url: http://arxiv.org/abs/2412.16943v1
- Date: Sun, 22 Dec 2024 09:25:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:59:49.234017
- Title: A Career Interview Dialogue System using Large Language Model-based Dynamic Slot Generation
- Title(参考訳): 大規模言語モデルに基づく動的スロット生成を用いたキャリアインタビュー対話システム
- Authors: Ekai Hashimoto, Mikio Nakano, Takayoshi Sakurai, Shun Shiramatsu, Toshitake Komazaki, Shiho Tsuchiya,
- Abstract要約: 本研究は,看護管理者のキャリア面接の効率化と質の向上を目的とする。
我々は,スタッフのキャリアに関する情報収集のために,事前に対話を行うスロット満載対話システムを開発している。
- 参考スコア(独自算出の注目度): 0.6597195879147557
- License:
- Abstract: This study aims to improve the efficiency and quality of career interviews conducted by nursing managers. To this end, we have been developing a slot-filling dialogue system that engages in pre-interviews to collect information on staff careers as a preparatory step before the actual interviews. Conventional slot-filling-based interview dialogue systems have limitations in the flexibility of information collection because the dialogue progresses based on predefined slot sets. We therefore propose a method that leverages large language models (LLMs) to dynamically generate new slots according to the flow of the dialogue, achieving more natural conversations. Furthermore, we incorporate abduction into the slot generation process to enable more appropriate and effective slot generation. To validate the effectiveness of the proposed method, we conducted experiments using a user simulator. The results suggest that the proposed method using abduction is effective in enhancing both information-collecting capabilities and the naturalness of the dialogue.
- Abstract(参考訳): 本研究は,看護管理者のキャリア面接の効率化と質の向上を目的とする。
この目的のために我々は,実際のインタビューの前に,スタッフのキャリアに関する情報を予備的なステップとして収集する,事前面接を行うスロット満載対話システムを開発している。
従来のスロット充足型インタビュー対話システムでは,事前に定義されたスロットセットに基づいて対話が進行するため,情報収集の柔軟性に限界がある。
そこで本稿では,対話の流れに応じて新たなスロットを動的に生成し,より自然な会話を実現するために,大規模言語モデル(LLM)を活用する手法を提案する。
さらに、より適切かつ効果的なスロット生成を可能にするため、スロット生成プロセスにアブダクションを組み込む。
提案手法の有効性を検証するために,ユーザシミュレータを用いた実験を行った。
提案手法は,情報収集能力と対話の自然性の向上に有効であることが示唆された。
関連論文リスト
- Data Augmentation Integrating Dialogue Flow and Style to Adapt Spoken Dialogue Systems to Low-Resource User Groups [1.7725414095035827]
本研究では,音声対話システム(SDS)が,対話行動の異なるユーザと対話する場合に直面する課題について考察する。
限られたリソースを持つユーザグループのSDS性能を向上させるための新しいデータ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-20T03:33:04Z) - Enhancing Large Language Model Induced Task-Oriented Dialogue Systems
Through Look-Forward Motivated Goals [76.69419538047813]
ProToDアプローチは、将来の対話行動を予測し、ToDシステムを強化するためにゴール指向の報酬シグナルを組み込む。
本稿では,目標駆動型対話シミュレーションに基づくToDシステム評価手法を提案する。
また,MultiWoZ 2.1データセットを用いた実験により,データの10%しか利用せず,優れた性能が得られることを示した。
論文 参考訳(メタデータ) (2023-09-16T10:56:00Z) - FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for
Task-Oriented Dialogue [20.79359173822053]
本稿では,対話前学習モデルFutureTODを提案する。
我々の直感は、良い対話表現はどちらも局所的な文脈情報を学び、将来の情報を予測することである。
論文 参考訳(メタデータ) (2023-06-17T10:40:07Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue
Systems [109.16553492049441]
よりスケーラブルで一般化可能な対話システムに知識推論機能を組み込む新しい手法を提案する。
我々の知識を最大限に活用するために、変圧器モデルが微分可能な知識グラフを解析して応答を生成するのは、これが初めてである。
論文 参考訳(メタデータ) (2022-03-20T17:51:49Z) - Precognition in Task-oriented Dialogue Understanding: Posterior
Regularization by Future Context [8.59600111891194]
本稿では,後続正則化手法を用いて,歴史的・将来の情報を共同でモデル化することを提案する。
これらの間のKL距離を最適化し、トレーニング中にモデルを正規化します。
2つの対話データセットの実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2022-03-07T09:58:50Z) - Response Generation with Context-Aware Prompt Learning [19.340498579331555]
本稿では,対話生成問題を素早い学習課題とする,事前学習型対話モデリングのための新しい手法を提案する。
限られた対話データを微調整する代わりに、我々のアプローチであるDialogPromptは、対話コンテキストに最適化された連続的なプロンプト埋め込みを学習する。
提案手法は,微調整ベースラインと汎用的なプロンプト学習法を著しく上回っている。
論文 参考訳(メタデータ) (2021-11-04T05:40:13Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Retrieval-Free Knowledge-Grounded Dialogue Response Generation with
Adapters [52.725200145600624]
軽量アダプタで事前学習した言語モデルに事前知識を注入し、検索プロセスをバイパスする KnowExpert を提案する。
実験結果から,KnowExpertは検索ベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2021-05-13T12:33:23Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。