Multifaceted User Modeling in Recommendation: A Federated Foundation Models Approach
- URL: http://arxiv.org/abs/2412.16969v1
- Date: Sun, 22 Dec 2024 11:00:00 GMT
- Title: Multifaceted User Modeling in Recommendation: A Federated Foundation Models Approach
- Authors: Chunxu Zhang, Guodong Long, Hongkuan Guo, Zhaojie Liu, Guorui Zhou, Zijian Zhang, Yang Liu, Bo Yang,
- Abstract summary: Multifaceted user modeling aims to uncover fine-grained patterns and learn representations from user data.
Recent studies on foundation model-based recommendation have emphasized the Transformer architecture's remarkable ability to capture complex, non-linear user-item interaction relationships.
We propose a novel Transformer layer designed specifically for recommendation, using the self-attention mechanism to capture sequential user-item interaction patterns.
- Score: 28.721903315405353
- License:
- Abstract: Multifaceted user modeling aims to uncover fine-grained patterns and learn representations from user data, revealing their diverse interests and characteristics, such as profile, preference, and personality. Recent studies on foundation model-based recommendation have emphasized the Transformer architecture's remarkable ability to capture complex, non-linear user-item interaction relationships. This paper aims to advance foundation model-based recommendersystems by introducing enhancements to multifaceted user modeling capabilities. We propose a novel Transformer layer designed specifically for recommendation, using the self-attention mechanism to capture sequential user-item interaction patterns. Specifically, we design a group gating network to identify user groups, enabling hierarchical discovery across different layers, thereby capturing the multifaceted nature of user interests through multiple Transformer layers. Furthermore, to broaden the data scope and further enhance multifaceted user modeling, we extend the framework to a federated setting, enabling the use of private datasets while ensuring privacy. Experimental validations on benchmark datasets demonstrate the superior performance of our proposed method. Code is available.
Related papers
- Enhancing User Intent for Recommendation Systems via Large Language Models [0.0]
DUIP is a novel framework that combines LSTM networks with Large Language Models (LLMs) to dynamically capture user intent and generate personalized item recommendations.
Our findings suggest that DUIP is a promising approach for next-generation recommendation systems, with potential for further improvements in cross-modal recommendations and scalability.
arXiv Detail & Related papers (2025-01-18T20:35:03Z) - Personalized and Sequential Text-to-Image Generation [24.787970969428976]
We create a novel dataset of sequential preferences, which we leverage, together with large-scale open-source (non-sequential) datasets.
We construct user-preference and user-choice models using an EM strategy and identify varying user preference types.
We then leverage a large multimodal language model (LMM) and a value-based RL approach to suggest a personalized and diverse slate of prompt expansions to the user.
arXiv Detail & Related papers (2024-12-10T01:47:40Z) - Synthesize, Partition, then Adapt: Eliciting Diverse Samples from Foundation Models [14.037826400805741]
We propose a novel framework, Synthesize-Partition-Adapt (SPA), that leverages the abundant synthetic data available in many domains to elicit diverse responses from foundation models.
By leveraging signal provided by data attribution methods such as influence functions, SPA partitions data into subsets, each targeting unique aspects of the data, and trains multiple model adaptations optimized for these subsets.
arXiv Detail & Related papers (2024-11-11T05:13:21Z) - PEFT-U: Parameter-Efficient Fine-Tuning for User Personalization [9.594958534074074]
We introduce the PEFT-U Benchmark: a new dataset for building and evaluating NLP models for user personalization.
We explore the challenge of efficiently personalizing LLMs to accommodate user-specific preferences in the context of diverse user-centered tasks.
arXiv Detail & Related papers (2024-07-25T14:36:18Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRec aims to introduce a generative paradigm into multimodal recommendation.
We first devise a hierarchical quantization method Graph CF-RQVAE to assign Rec-ID for each item from its multimodal information.
We then train a Transformer-based recommender to generate the Rec-IDs of user-preferred items based on historical interaction sequences.
arXiv Detail & Related papers (2024-04-25T12:11:27Z) - Towards Unified Multi-Modal Personalization: Large Vision-Language Models for Generative Recommendation and Beyond [87.1712108247199]
Our goal is to establish a Unified paradigm for Multi-modal Personalization systems (UniMP)
We develop a generic and personalization generative framework, that can handle a wide range of personalized needs.
Our methodology enhances the capabilities of foundational language models for personalized tasks.
arXiv Detail & Related papers (2024-03-15T20:21:31Z) - Ada-Retrieval: An Adaptive Multi-Round Retrieval Paradigm for Sequential
Recommendations [50.03560306423678]
We propose Ada-Retrieval, an adaptive multi-round retrieval paradigm for recommender systems.
Ada-Retrieval iteratively refines user representations to better capture potential candidates in the full item space.
arXiv Detail & Related papers (2024-01-12T15:26:40Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Multi-Behavior Enhanced Recommendation with Cross-Interaction
Collaborative Relation Modeling [42.6279077675585]
This work proposes a Graph Neural Multi-Behavior Enhanced Recommendation framework.
It explicitly models the dependencies between different types of user-item interactions under a graph-based message passing architecture.
Experiments on real-world recommendation datasets show that our GNMR consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-01-07T03:12:37Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Federated Multi-view Matrix Factorization for Personalized
Recommendations [53.74747022749739]
We introduce the federated multi-view matrix factorization method that extends the federated learning framework to matrix factorization with multiple data sources.
Our method is able to learn the multi-view model without transferring the user's personal data to a central server.
arXiv Detail & Related papers (2020-04-08T21:07:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.