論文の概要: An OpenMind for 3D medical vision self-supervised learning
- arxiv url: http://arxiv.org/abs/2412.17041v1
- Date: Sun, 22 Dec 2024 14:38:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:34.093835
- Title: An OpenMind for 3D medical vision self-supervised learning
- Title(参考訳): 3次元医用ビジョン自己教師型学習のためのOpenMind
- Authors: Tassilo Wald, Constantin Ulrich, Jonathan Suprijadi, Michal Nohel, Robin Peretzke, Klaus H. Maier-Hein,
- Abstract要約: 3D医療ビジョンの自己指導型学習の分野では、一貫性と標準化が欠如している。
我々は114kの3D脳MRIボリュームからなる公開事前学習データセットを公表した。
- 参考スコア(独自算出の注目度): 0.49425941987249467
- License:
- Abstract: The field of 3D medical vision self-supervised learning lacks consistency and standardization. While many methods have been developed it is impossible to identify the current state-of-the-art, due to i) varying and small pre-training datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper we bring clarity to this field and lay the foundation for further method advancements: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes and b) benchmark existing SSL methods under common architectures and c) provide the code of our framework publicly to facilitate rapid adoption and reproduction. This pre-print \textit{only describes} the dataset contribution (a); Data, benchmark, and codebase will be made available shortly.
- Abstract(参考訳): 3D医療ビジョンの自己指導型学習の分野では、一貫性と標準化が欠如している。
多くの方法が開発されているが、現在の最先端を識別することは不可能である。
一 変種小種事前学習データセット
二 異なる建築、及び
三 異なる下流データセットに基づいて評価すること。
本稿では,この分野に明快さをもたらし,さらなる手法開発の基礎を築いた。
a)114kの3D脳MRIボリュームからなる最大公用事前訓練データセットを公開し、
b) 共通アーキテクチャの下で既存のSSLメソッドをベンチマークし、
c) 迅速な採用と再生を容易にするため、我々のフレームワークのコードを公に提供します。
このpre-print \textit{only} はデータセットのコントリビューションを記述する
(a) データ、ベンチマーク、コードベースはまもなく利用可能になる。
関連論文リスト
- Learning General-Purpose Biomedical Volume Representations using Randomized Synthesis [9.355513913682794]
現在のバイオメディカルファンデーションモデルは、パブリックな3Dデータセットが小さいため、一般化に苦慮している。
本稿では,新しいバイオメディカルコンテキストへの一般化を可能にする,高度に可変なトレーニングサンプルを合成するデータエンジンを提案する。
次に, ボクセルレベルのタスクに対して1つの3Dネットワークをトレーニングするために, データエンジンでシミュレートされたニュアンス画像の変動に対して, ネットワークが安定であるように事前訓練するコントラスト学習手法を開発した。
論文 参考訳(メタデータ) (2024-11-04T18:40:46Z) - Revisiting MAE pre-training for 3D medical image segmentation [0.08484806297945031]
Self-Supervised Learning (SSL)は、未使用の膨大な臨床データセットの可能性を解放するエキサイティングな機会を提供する。
SSLは自然言語処理やコンピュータビジョンといった分野に革命をもたらし、その3D医療画像コンピューティングへの採用は、3つの重要な落とし穴によって制限されてきた。
本稿では,現在最先端のnnU-Netフレームワーク内の残留U-Netアーキテクチャを用いて,39kの脳MRIボリュームとiiの大規模データセットを活用することにより,これらの課題に対処する。
論文 参考訳(メタデータ) (2024-10-30T15:42:59Z) - Cross-Domain Distribution Alignment for Segmentation of Private Unannotated 3D Medical Images [20.206972068340843]
本稿では、この問題を解決するために、新しいソースフリーなUnsupervised Domain Adaptation (UDA) 手法を提案する。
我々のアイデアは、ベースモデルにより、関連するソースドメインの内部的に学習された分布を推定することに基づいている。
我々は,実世界の3D医療データセット上でのSOTA性能を実証した。
論文 参考訳(メタデータ) (2024-10-11T19:28:10Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
本稿では,マルチモーダルな3Dシーンデータセットと階層型言語アノテーションを用いたベンチマーク,MMScanを構築した。
結果として得られたマルチモーダルな3Dデータセットは、109kオブジェクトと7.7kリージョン上の1.4Mメタアノテーション付きキャプションと、3Dビジュアルグラウンドと質問応答ベンチマークのための3.04M以上の多様なサンプルを含んでいる。
論文 参考訳(メタデータ) (2024-06-13T17:59:30Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
マルチモダリティ基盤モデルのためのオープンソースプラットフォームであるOpenMEDLabについて紹介する。
これは、最前線臨床および生体情報学応用のための大規模言語とビジョンモデルを刺激し、微調整する先駆的な試みの解決策をカプセル化する。
様々な医用画像のモダリティ、臨床テキスト、タンパク質工学など、事前訓練された基礎モデル群へのアクセスが可能である。
論文 参考訳(メタデータ) (2024-02-28T03:51:02Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - BenchMD: A Benchmark for Unified Learning on Medical Images and Sensors [8.695342954247606]
アーキテクチャやトレーニング技術を含む,統一的でモダリティに依存しない手法が,さまざまな医療タスクでどのように機能するかをテストするベンチマークであるBenchMDを提示する。
その結果,統一的な学習手法がすべてのモダリティに対して高い性能を達成できないことが示され,ベンチマークに十分な改善の余地が残されている。
論文 参考訳(メタデータ) (2023-04-17T17:59:26Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - Towards Open Set 3D Learning: A Benchmark on Object Point Clouds [17.145309633743747]
本論文は,オープンセット3次元学習に関する第1報である。
カテゴリのセマンティックシフトの観点から,難易度を増すような新しいテストベッドを導入する。
本稿では,最新のアプローチが3Dデータに有効であるかどうか,その理解のために,アウト・オブ・ディストリビューションとオープン・セット2D文献について検討する。
論文 参考訳(メタデータ) (2022-07-23T17:00:45Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。