論文の概要: AI-Based Teat Shape and Skin Condition Prediction for Dairy Management
- arxiv url: http://arxiv.org/abs/2412.17142v1
- Date: Sun, 22 Dec 2024 19:37:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:59:10.481575
- Title: AI-Based Teat Shape and Skin Condition Prediction for Dairy Management
- Title(参考訳): 乳製品管理のためのAIによるティート形状と皮膚条件予測
- Authors: Yuexing Hao, Tiancheng Yuan, Yuting Yang, Aarushi Gupta, Matthias Wieland, Ken Birman, Parminder S. Basran,
- Abstract要約: 我々は,乳牛のティート局所化,ティート形状,およびティート皮膚状態分類にAIツールを適用した。
得られたティート形状予測モデルは平均平均精度(mAP)が0.783であり、ティート皮膚条件モデルの平均精度は0.828である。
- 参考スコア(独自算出の注目度): 1.5645452288168529
- License:
- Abstract: Dairy owners spend significant effort to keep their animals healthy. There is good reason to hope that technologies such as computer vision and artificial intelligence (AI) could reduce these costs, yet obstacles arise when adapting advanced tools to farming environments. In this work, we adapt AI tools to dairy cow teat localization, teat shape, and teat skin condition classifications. We also curate a data collection and analysis methodology for a Machine Learning (ML) pipeline. The resulting teat shape prediction model achieves a mean Average Precision (mAP) of 0.783, and the teat skin condition model achieves a mean average precision of 0.828. Our work leverages existing ML vision models to facilitate the individualized identification of teat health and skin conditions, applying AI to the dairy management industry.
- Abstract(参考訳): 乳牛の飼い主は、動物を健康に保つためにかなりの努力を払っています。
コンピュータビジョンや人工知能(AI)といった技術がこれらのコストを削減できると期待する理由は十分あるが、高度なツールを農業環境に適用する際に障害が発生する。
本研究では, 乳牛のティート局所化, ティート形状, ティート皮膚状態分類にAIツールを適用した。
また、機械学習(ML)パイプラインのデータ収集と分析の方法論をキュレートする。
得られたティート形状予測モデルは平均平均精度(mAP)が0.783であり、ティート皮膚条件モデルの平均精度は0.828である。
我々の研究は、既存のMLビジョンモデルを活用して、乳製品管理業界にAIを適用することにより、ティートヘルスと皮膚状態の個人識別を容易にする。
関連論文リスト
- Data Diet: Can Trimming PET/CT Datasets Enhance Lesion Segmentation? [70.38903555729081]
我々はAutoPET3データ中心のトラックで競合するアプローチについて述べる。
AutoPETIIIデータセットでは、データセット全体をトレーニングしたモデルが望ましくない特性を示す。
我々は、スクラッチから再トレーニングする前に、モデル損失によって測定されたトレーニングデータセットから最も簡単なサンプルを取り除き、これを対処する。
論文 参考訳(メタデータ) (2024-09-20T14:47:58Z) - Accelerating Domain-Aware Electron Microscopy Analysis Using Deep Learning Models with Synthetic Data and Image-Wide Confidence Scoring [0.0]
我々は物理に基づく合成画像とデータ生成装置を作成し、その結果、同等の精度(0.86)、リコール(0.63)、F1スコア(0.71)、エンジニアリング特性予測(R2=0.82)を実現する機械学習モデルを得た。
本研究は,合成データがMLの人間依存を排除し,画像毎に多くの特徴を検出する必要がある場合に,ドメイン認識の手段を提供することを示す。
論文 参考訳(メタデータ) (2024-08-02T20:15:15Z) - Rare Class Prediction Model for Smart Industry in Semiconductor Manufacturing [1.3955252961896323]
本研究では, 半導体製造プロセスから収集したIn situデータに対して, 希少なクラス予測手法を開発した。
第一の目的は、ノイズとクラス不均衡の問題に対処し、クラス分離を強化するモデルを構築することである。
ROC曲線はAUCが0.95、精度が0.66、リコールが0.96である。
論文 参考訳(メタデータ) (2024-06-06T22:09:43Z) - Optimization of Lightweight Malware Detection Models For AIoT Devices [2.4947404267499587]
マルウェア侵入はInternet of Things(IoT)とArtificial Intelligence of Things(AIoT)デバイスの問題である。
本研究の目的は、提案するスーパーラーナーメタ学習アンサンブルモデルを最適化して、ローエンドのAIoTデバイスで実現できるようにすることである。
論文 参考訳(メタデータ) (2024-04-06T09:30:38Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
本稿では,領域制約として臨床専門知識をシームレスに統合する革新的プロジェクションに基づく手法を提案する。
我々は、患者データの健全な範囲を規定する制約から補正されたデータの距離を測定する。
AUROCは0.865で、精度は0.922で、従来のMLモデルを上回る。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - Maintaining Stability and Plasticity for Predictive Churn Reduction [8.971668467496055]
我々は,累積モデル組合せ (AMC) という解を提案する。
AMCは一般的な手法であり、モデルやデータ特性に応じてそれぞれ独自の利点を持ついくつかの事例を提案する。
論文 参考訳(メタデータ) (2023-05-06T20:56:20Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z) - CHEER: Rich Model Helps Poor Model via Knowledge Infusion [69.23072792708263]
我々は、そのようなリッチなモデルを伝達可能な表現に簡潔に要約できる知識注入フレームワークCHEERを開発した。
実験の結果、CHEERは複数の生理的データセットのマクロF1スコアにおいて、ベースラインを5.60%から46.80%上回った。
論文 参考訳(メタデータ) (2020-05-21T21:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。