論文の概要: Towards Transparent and Accurate Diabetes Prediction Using Machine Learning and Explainable Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2501.18071v2
- Date: Wed, 12 Feb 2025 11:31:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:47:29.351699
- Title: Towards Transparent and Accurate Diabetes Prediction Using Machine Learning and Explainable Artificial Intelligence
- Title(参考訳): 機械学習と説明可能な人工知能を用いた透明かつ正確な糖尿病予測に向けて
- Authors: Pir Bakhsh Khokhar, Viviana Pentangelo, Fabio Palomba, Carmine Gravino,
- Abstract要約: 本研究では機械学習モデルとXAIツールを用いた糖尿病予測の枠組みを提案する。
アンサンブルモデルは精度が高く、テスト精度は92.50%、ROC-AUCは0.975であった。
その結果、XAIと組み合わせたMLは、医療システムで使用する正確で計算学的に透過的なツールを開発するための有望な手段であることが示唆された。
- 参考スコア(独自算出の注目度): 8.224338294959699
- License:
- Abstract: Diabetes mellitus (DM) is a global health issue of significance that must be diagnosed as early as possible and managed well. This study presents a framework for diabetes prediction using Machine Learning (ML) models, complemented with eXplainable Artificial Intelligence (XAI) tools, to investigate both the predictive accuracy and interpretability of the predictions from ML models. Data Preprocessing is based on the Synthetic Minority Oversampling Technique (SMOTE) and feature scaling used on the Diabetes Binary Health Indicators dataset to deal with class imbalance and variability of clinical features. The ensemble model provided high accuracy, with a test accuracy of 92.50% and an ROC-AUC of 0.975. BMI, Age, General Health, Income, and Physical Activity were the most influential predictors obtained from the model explanations. The results of this study suggest that ML combined with XAI is a promising means of developing accurate and computationally transparent tools for use in healthcare systems.
- Abstract(参考訳): 糖尿病(英: Diabetes mellitus、DM)は、できるだけ早く診断し、うまく管理しなければならない、世界的な健康問題である。
本研究では,機械学習(ML)モデルを用いた糖尿病予測のためのフレームワークを提案する。このフレームワークは,機械学習モデルからの予測の予測精度と解釈可能性の両方を調査するために,eXplainable Artificial Intelligence(XAI)ツールと補完する。
データ前処理は、SMOTE(Synthetic Minority Oversampling Technique)とDiabetes Binary Health Indicatorsデータセットで使用される機能スケーリングに基づいて、臨床特徴のクラス不均衡と可変性を扱う。
アンサンブルモデルは精度が高く、テスト精度は92.50%、ROC-AUCは0.975であった。
BMI, 年齢, 一般健康, 所得, 身体活動は, モデル説明から得られた最も影響力のある予測因子であった。
本研究の結果から,XAIと組み合わせたMLは,医療システムにおいて,正確かつ計算学的に透過的なツールを開発する上で有望な手段であることが示唆された。
関連論文リスト
- Explainable Diagnosis Prediction through Neuro-Symbolic Integration [11.842565087408449]
我々は、診断予測のための説明可能なモデルを開発するために、神経象徴的手法、特に論理ニューラルネットワーク(LNN)を用いている。
私たちのモデル、特に$M_textmulti-pathway$と$M_textcomprehensive$は、従来のモデルよりも優れたパフォーマンスを示します。
これらの知見は、医療AI応用における精度と説明可能性のギャップを埋める神経象徴的アプローチの可能性を強調している。
論文 参考訳(メタデータ) (2024-10-01T22:47:24Z) - Comparative Analysis of LSTM Neural Networks and Traditional Machine Learning Models for Predicting Diabetes Patient Readmission [0.0]
本研究はDiabetes 130-US Hospitalsデータセットを用いて,各種機械学習モデルによる寛解患者の分析と予測を行う。
LightGBMは、XGBoostが首位だったのに対して、従来のモデルとしてはベストだった。
本研究は,予測医療モデリングにおいて,モデル選択,検証,解釈可能性が重要なステップであることを示す。
論文 参考訳(メタデータ) (2024-06-28T15:06:22Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - Comparative Analysis of Epileptic Seizure Prediction: Exploring Diverse
Pre-Processing Techniques and Machine Learning Models [0.0]
脳波データを用いたてんかん発作予測のための5つの機械学習モデルの比較分析を行った。
本分析の結果は,各モデルの性能を精度で示すものである。
ETモデルは99.29%の精度で最高の性能を示した。
論文 参考訳(メタデータ) (2023-08-06T08:50:08Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)デバイスは、患者の血糖値に関する詳細な、非侵襲的でリアルタイムな洞察を提供する。
将来のグルコースレベルの予測方法としての高度な機械学習(ML)モデルを活用することで、生活改善の実質的な品質がもたらされる。
論文 参考訳(メタデータ) (2023-02-24T19:10:40Z) - Prognosis and Treatment Prediction of Type-2 Diabetes Using Deep Neural
Network and Machine Learning Classifiers [1.1470070927586016]
本研究の動作は,7つの機械学習分類器と,糖尿病の検出と治療を高精度に予測するためのニューラルネットワーク手法の比較研究である。
トレーニングとテストデータセットは9483人の糖尿病患者の情報を蓄積したものです。
私たちのハイパフォーマンスモデルは、糖尿病を予測し、より正確な予測モデルの研究を促進するために病院によって利用できます。
論文 参考訳(メタデータ) (2023-01-08T19:10:20Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。