論文の概要: Enhancing Item Tokenization for Generative Recommendation through Self-Improvement
- arxiv url: http://arxiv.org/abs/2412.17171v1
- Date: Sun, 22 Dec 2024 21:56:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:59:30.241479
- Title: Enhancing Item Tokenization for Generative Recommendation through Self-Improvement
- Title(参考訳): 自己改善によるジェネレーティブレコメンデーションのためのアイテムトークン化の促進
- Authors: Runjin Chen, Mingxuan Ju, Ngoc Bui, Dimosthenis Antypas, Stanley Cai, Xiaopeng Wu, Leonardo Neves, Zhangyang Wang, Neil Shah, Tong Zhao,
- Abstract要約: 生成レコメンデーションシステムは大規模言語モデル(LLM)によって駆動される
現在のアイテムトークン化手法には、テキスト記述、数値文字列、離散トークンのシーケンスの使用が含まれる。
自己改善アイテムトークン化手法を提案し,LLMがトレーニングプロセス中に独自のアイテムトークン化を洗練できるようにする。
- 参考スコア(独自算出の注目度): 67.94240423434944
- License:
- Abstract: Generative recommendation systems, driven by large language models (LLMs), present an innovative approach to predicting user preferences by modeling items as token sequences and generating recommendations in a generative manner. A critical challenge in this approach is the effective tokenization of items, ensuring that they are represented in a form compatible with LLMs. Current item tokenization methods include using text descriptions, numerical strings, or sequences of discrete tokens. While text-based representations integrate seamlessly with LLM tokenization, they are often too lengthy, leading to inefficiencies and complicating accurate generation. Numerical strings, while concise, lack semantic depth and fail to capture meaningful item relationships. Tokenizing items as sequences of newly defined tokens has gained traction, but it often requires external models or algorithms for token assignment. These external processes may not align with the LLM's internal pretrained tokenization schema, leading to inconsistencies and reduced model performance. To address these limitations, we propose a self-improving item tokenization method that allows the LLM to refine its own item tokenizations during training process. Our approach starts with item tokenizations generated by any external model and periodically adjusts these tokenizations based on the LLM's learned patterns. Such alignment process ensures consistency between the tokenization and the LLM's internal understanding of the items, leading to more accurate recommendations. Furthermore, our method is simple to implement and can be integrated as a plug-and-play enhancement into existing generative recommendation systems. Experimental results on multiple datasets and using various initial tokenization strategies demonstrate the effectiveness of our method, with an average improvement of 8\% in recommendation performance.
- Abstract(参考訳): 大規模言語モデル(LLM)によって駆動される生成レコメンデーションシステムは、アイテムをトークンシーケンスとしてモデル化し、生成方法でレコメンデーションを生成することによって、ユーザの嗜好を予測する革新的なアプローチを提案する。
このアプローチにおける重要な課題は、アイテムの効果的なトークン化であり、それらがLLMと互換性のある形式で表現されることを保証することである。
現在のアイテムトークン化手法には、テキスト記述、数値文字列、離散トークンのシーケンスの使用が含まれる。
テキストベースの表現はLLMトークン化とシームレスに統合されるが、長すぎることが多く、非効率性や正確な生成を複雑にする。
数値文字列は簡潔であるが、意味的な深さに欠け、意味のある項目の関係を捉えることができない。
新しく定義されたトークンのシーケンスとしてのアイテムのトークン化は牽引力を得てきたが、トークンの割り当てには外部モデルやアルゴリズムが必要となることが多い。
これらの外部プロセスは、LLMの内部で事前訓練されたトークン化スキーマと一致しない可能性があり、不整合とモデル性能の低下につながる。
これらの制約に対処するために,LLM が学習過程において独自のアイテムトークン化を洗練できる自己改善アイテムトークン化手法を提案する。
我々のアプローチは、任意の外部モデルによって生成されたアイテムトークン化から始まり、LLMの学習パターンに基づいて定期的にこれらのトークン化を調整する。
このようなアライメントプロセスにより、トークン化とLCMの内部的なアイテム理解の一貫性が保証され、より正確なレコメンデーションが導かれる。
さらに,本手法は実装が簡単で,既存の生成レコメンデーションシステムにプラグイン・アンド・プレイ・エンハンスメントとして組み込むことができる。
複数のデータセットに対する実験結果と様々な初期トークン化手法を用いて,提案手法の有効性を実証し,提案手法の推奨性能を平均 8 % 向上させた。
関連論文リスト
- Context-aware Prompt Tuning: Advancing In-Context Learning with Adversarial Methods [69.36397993451742]
In this work introduced Context-aware Prompt Tuning (CPT) - ICL, PT, and adversarial attack。
入力および出力フォーマットのユニークな構造を考慮して、特定のコンテキストトークンを変更する。
敵の攻撃にインスパイアされた我々は、損失を最大化するのではなく、最小化に焦点をあてて、コンテキストに存在するラベルに基づいて入力を調整する。
論文 参考訳(メタデータ) (2024-10-22T17:45:47Z) - STORE: Streamlining Semantic Tokenization and Generative Recommendation with A Single LLM [59.08493154172207]
本稿では,意味的トークン化と生成的レコメンデーションプロセスを合理化する統合フレームワークを提案する。
我々は,意味的トークン化をテキスト・ツー・ケントタスクとして定式化し,生成的推薦をトークン・ツー・ケントタスクとして,トークン・ツー・ケント・コンストラクションタスクとテキスト・ツー・ケント補助タスクで補足する。
これらのタスクはすべて生成的な方法でフレーム化され、単一の大規模言語モデル(LLM)バックボーンを使用してトレーニングされる。
論文 参考訳(メタデータ) (2024-09-11T13:49:48Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
大規模言語モデル(LLM)デコードでは、与えられたコンテキストに基づいてトークンのシーケンスを生成する。
典型的な自己回帰復号法では、生成されたトークンごとに別の前方通過が必要となる。
微調整を必要とせずにLDMデコーディングを高速化するADEDを導入する。
論文 参考訳(メタデータ) (2024-06-27T22:20:39Z) - ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation [38.64175351885443]
大規模言語モデルは自然言語処理(NLP)領域で栄えている。
レコメンデーション指向の微調整モデルによって示された知性にもかかわらず、LLMはユーザーの行動パターンを完全に理解するのに苦労している。
既存の作業は、その重要な情報を導入することなく、与えられたテキストデータに対してのみLLMを微調整するだけである。
論文 参考訳(メタデータ) (2024-06-27T01:37:57Z) - TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation [16.93374578679005]
TokenRecは、大規模言語モデル(LLM)ベースのRecommender Systems(RecSys)のトークン化と検索のための新しいフレームワークである。
我々の戦略であるMasked Vector-Quantized (MQ) Tokenizerは、協調フィルタリングから学んだマスキングされたユーザ/イテム表現を離散トークンに定量化する。
我々の生成的検索パラダイムは,自動回帰復号処理やビーム検索処理の不要さを解消するために,ユーザに対してKドル以上のアイテムを効率的に推奨するように設計されている。
論文 参考訳(メタデータ) (2024-06-15T00:07:44Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - SED: Self-Evaluation Decoding Enhances Large Language Models for Better Generation [35.10931307279044]
本稿では,モデル生成の高速化を目的とした自己評価復号法であるSEDを提案する。
推測と評価のステップをデコードプロセスに統合し、LCMがより慎重に決定できるようにします。
論文 参考訳(メタデータ) (2024-05-26T12:43:18Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
我々は,特定の所望の出力に対して,ブラックボックス大言語モデル(LLM)を導くための新しいフレームワークであるDirectional Stimulus Promptingを紹介する。
LLMを直接調整するのではなく、小さな調整可能なポリシーモデルを用いて各入力インスタンスに対して補助的な指向性刺激プロンプトを生成する。
論文 参考訳(メタデータ) (2023-02-22T17:44:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。