論文の概要: Discriminative Image Generation with Diffusion Models for Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2412.17219v1
- Date: Mon, 23 Dec 2024 02:18:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:08.272123
- Title: Discriminative Image Generation with Diffusion Models for Zero-Shot Learning
- Title(参考訳): ゼロショット学習のための拡散モデルを用いた識別画像生成
- Authors: Dingjie Fu, Wenjin Hou, Shiming Chen, Shuhuang Chen, Xinge You, Salman Khan, Fahad Shahbaz Khan,
- Abstract要約: ゼロショット学習のための新たな識別画像生成フレームワークであるDIG-ZSLを提案する。
我々は、事前学習されたカテゴリー識別モデル(CDM)の指導のもと、各未確認クラスの識別クラストークン(DCT)を学習する。
本稿では,4つのデータセットに対する広範な実験と可視化を行い,(1)多彩で高品質な画像を生成すること,(2)最先端の非人間アノテーション型セマンティックプロトタイプ手法を大きなマージンで上回ること,(3)人間アノテーションを利用したベースラインよりも同等あるいは優れた性能を実現すること,の4つが示される。
- 参考スコア(独自算出の注目度): 53.44301001173801
- License:
- Abstract: Generative Zero-Shot Learning (ZSL) methods synthesize class-related features based on predefined class semantic prototypes, showcasing superior performance. However, this feature generation paradigm falls short of providing interpretable insights. In addition, existing approaches rely on semantic prototypes annotated by human experts, which exhibit a significant limitation in their scalability to generalized scenes. To overcome these deficiencies, a natural solution is to generate images for unseen classes using text prompts. To this end, We present DIG-ZSL, a novel Discriminative Image Generation framework for Zero-Shot Learning. Specifically, to ensure the generation of discriminative images for training an effective ZSL classifier, we learn a discriminative class token (DCT) for each unseen class under the guidance of a pre-trained category discrimination model (CDM). Harnessing DCTs, we can generate diverse and high-quality images, which serve as informative unseen samples for ZSL tasks. In this paper, the extensive experiments and visualizations on four datasets show that our DIG-ZSL: (1) generates diverse and high-quality images, (2) outperforms previous state-of-the-art nonhuman-annotated semantic prototype-based methods by a large margin, and (3) achieves comparable or better performance than baselines that leverage human-annotated semantic prototypes. The codes will be made available upon acceptance of the paper.
- Abstract(参考訳): Generative Zero-Shot Learning (ZSL)メソッドは、事前に定義されたクラスセマンティックプロトタイプに基づいてクラス関連の機能を合成し、優れた性能を示す。
しかし、この特徴生成パラダイムは解釈可能な洞察を提供していない。
加えて、既存のアプローチは人間の専門家によって注釈付けされたセマンティックプロトタイプに依存しており、その拡張性は一般的な場面に大きく制限されている。
これらの欠陥を克服するために、自然な解決策は、テキストプロンプトを使用して、目に見えないクラスのイメージを生成することである。
そこで本研究では,ゼロショット学習のための新たな識別画像生成フレームワークであるDIG-ZSLを提案する。
具体的には、有効なZSL分類器を訓練するための識別的画像の生成を保証するために、事前学習されたカテゴリー識別モデル(CDM)の指導のもと、各未確認クラスに対する識別的クラストークン(DCT)を学習する。
DCTを損なうことなく、多彩で高品質な画像を生成することができ、ZSLタスクの見知らぬサンプルとして役立ちます。
本稿では,4つのデータセットに対する広範な実験と可視化を行い,(1)多彩で高品質な画像を生成すること,(2)最先端の非人間アノテーション型セマンティックプロトタイプを大きなマージンで上回ること,(3)人間アノテーション型セマンティックプロトタイプを利用するベースラインよりも同等あるいは優れたパフォーマンスを実現すること,の3つを述べる。
コードは、論文の受理時に利用可能になる。
関連論文リスト
- Towards Generative Class Prompt Learning for Fine-grained Visual Recognition [5.633314115420456]
ジェネレーティブ・クラス・プロンプト・ラーニングとコントラスト・マルチクラス・プロンプト・ラーニングを紹介する。
Generative Class Prompt Learningは、学習可能なクラスプロンプトを持つ数ショットの例に条件付けすることで、クラス埋め込みにおける視覚言語相乗性を改善する。
CoMPLeはこの基盤の上に構築されており、クラス間の分離を促進する対照的な学習コンポーネントを導入している。
論文 参考訳(メタデータ) (2024-09-03T12:34:21Z) - Diversified in-domain synthesis with efficient fine-tuning for few-shot
classification [64.86872227580866]
画像分類は,クラスごとのラベル付き例の小さなセットのみを用いて,画像分類器の学習を目的としている。
合成データを用いた数ショット学習における一般化問題に対処する新しいアプローチである DisEF を提案する。
提案手法を10種類のベンチマークで検証し,ベースラインを一貫して上回り,数ショット分類のための新しい最先端の手法を確立した。
論文 参考訳(メタデータ) (2023-12-05T17:18:09Z) - Zero-Shot Learning by Harnessing Adversarial Samples [52.09717785644816]
本稿では,HAS(Harnessing Adversarial Samples)によるZSL(Zero-Shot Learning)アプローチを提案する。
HASは3つの重要な側面を考慮に入れた敵の訓練を通じてZSLを前進させる。
本稿では,ZSLと一般化ゼロショット学習(GZSL)の両シナリオにおいて,敵対的サンプルアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-08-01T06:19:13Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Discffusion: Discriminative Diffusion Models as Few-shot Vision and Language Learners [88.07317175639226]
本稿では,事前学習したテキストと画像の拡散モデルを数ショットの識別学習者に変換する新しい手法,DSDを提案する。
本手法は, 安定拡散モデルにおいて, 視覚情報とテキスト情報の相互影響を捉えるために, クロスアテンションスコアを用いている。
論文 参考訳(メタデータ) (2023-05-18T05:41:36Z) - Diversity is Definitely Needed: Improving Model-Agnostic Zero-shot
Classification via Stable Diffusion [22.237426507711362]
モデル非依存ゼロショット分類(モデル非依存ゼロショット分類、英: Model-Agnostic Zero-Shot Classification、MA-ZSC)とは、訓練中に実際の画像を使わずに、実際の画像を分類するための非特異な分類アーキテクチャを訓練することである。
近年の研究では、拡散モデルを用いて合成訓練画像を生成することが、MA-ZSCに対処するための潜在的な解決策となることが示されている。
本研究では,事前学習した拡散モデルを用いてテキスト・画像生成プロセスの修正を行い,多様性を高める。
論文 参考訳(メタデータ) (2023-02-07T07:13:53Z) - Automatically Discovering Novel Visual Categories with Self-supervised
Prototype Learning [68.63910949916209]
本稿では,大規模な画像収集において未知のカテゴリを識別することを目的とした,新しいカテゴリ発見(NCD)の課題に取り組む。
本稿では,プロトタイプ表現学習とプロトタイプ自己学習という,2つの主要な段階からなる適応型プロトタイプ学習手法を提案する。
本研究では,4つのベンチマークデータセットについて広範な実験を行い,提案手法の有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-08-01T16:34:33Z) - DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning [37.48292304239107]
本稿では, DUET という変換器を用いたエンドツーエンドZSL手法を提案する。
画像からセマンティック属性を分離するモデルの能力を調べるために,モーダルなセマンティックグラウンドネットワークを開発した。
DUETは、しばしば最先端のパフォーマンスを達成することができ、そのコンポーネントは有効であり、予測は解釈可能である。
論文 参考訳(メタデータ) (2022-07-04T11:12:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。