FedMeld: A Model-dispersal Federated Learning Framework for Space-ground Integrated Networks
- URL: http://arxiv.org/abs/2412.17231v1
- Date: Mon, 23 Dec 2024 02:58:12 GMT
- Title: FedMeld: A Model-dispersal Federated Learning Framework for Space-ground Integrated Networks
- Authors: Qian Chen, Xianhao Chen, Kaibin Huang,
- Abstract summary: Space-ground integrated networks (SGINs) are expected to deliver artificial intelligence (AI) services to every corner of the world.<n>One mission of SGINs is to support federated learning (FL) at a global scale.<n>We propose an infrastructure-free federated learning framework based on a model dispersal (FedMeld) strategy.
- Score: 29.49615352723995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To bridge the digital divide, the space-ground integrated networks (SGINs), which will be a key component of the six-generation (6G) mobile networks, are expected to deliver artificial intelligence (AI) services to every corner of the world. One mission of SGINs is to support federated learning (FL) at a global scale. However, existing space-ground integrated FL frameworks involve ground stations or costly inter-satellite links, entailing excessive training latency and communication costs. To overcome these limitations, we propose an infrastructure-free federated learning framework based on a model dispersal (FedMeld) strategy, which exploits periodic movement patterns and store-carry-forward capabilities of satellites to enable parameter mixing across large-scale geographical regions. We theoretically show that FedMeld leads to global model convergence and quantify the effects of round interval and mixing ratio between adjacent areas on its learning performance. Based on the theoretical results, we formulate a joint optimization problem to design the staleness control and mixing ratio (SC-MR) for minimizing the training loss. By decomposing the problem into sequential SC and MR subproblems without compromising the optimality, we derive the round interval solution in a closed form and the mixing ratio in a semi-closed form to achieve the \textit{optimal} latency-accuracy tradeoff. Experiments using various datasets demonstrate that FedMeld achieves superior model accuracy while significantly reducing communication costs as compared with traditional FL schemes for SGINs.
Related papers
- Federated Learning in NTNs: Design, Architecture and Challenges [21.446301665317378]
We propose a distributed hierarchical learning (HFL) framework within the architecture of non-terrestrial networks (NTNs)
Our framework integrates both low-Earth orbit (LEO) satellites and ground clients in the FL training process while utilizing geostationary orbit (GEO) and medium-Earth orbit (MEO) satellites as relays.
The proposed framework offers several key benefits: (i) enhanced privacy through the decentralization of the FL constellation, (ii) improved model accuracy and reduced training loss while balancing latency, (iii) increased scalability of FL systems through ubiquitous connectivity by utilizing MEO and GEO satellites, and (iv
arXiv Detail & Related papers (2025-03-10T12:53:45Z) - Semi-decentralized Training of Spatio-Temporal Graph Neural Networks for Traffic Prediction [0.15978270011184256]
We explore and adapt semi-decentralized training techniques for Spatiotemporal Graph-Temporal Neural Networks (ST-GNNs) in smart mobility domain.<n>We implement a simulation framework where sensors are grouped by proximity into multiple cloudlets.<n>We show that semi-decentralized setups are comparable to centralized approaches in performance metrics.
arXiv Detail & Related papers (2024-12-04T10:20:21Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Federated Learning over Hierarchical Wireless Networks: Training Latency Minimization via Submodel Partitioning [15.311309249848739]
Hierarchical independent submodel training (HIST) is a new FL methodology that aims to address these issues in hierarchical cloud-edge-client networks.
We demonstrate how HIST can be augmented with over-the-air computation (AirComp) to further enhance the efficiency of the model aggregation over the edge cells.
arXiv Detail & Related papers (2023-10-27T04:42:59Z) - Semi-Federated Learning: Convergence Analysis and Optimization of A
Hybrid Learning Framework [70.83511997272457]
We propose a semi-federated learning (SemiFL) paradigm to leverage both the base station (BS) and devices for a hybrid implementation of centralized learning (CL) and FL.
We propose a two-stage algorithm to solve this intractable problem, in which we provide the closed-form solutions to the beamformers.
arXiv Detail & Related papers (2023-10-04T03:32:39Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
Low Earth Obit (LEO) satellite constellations have seen a sharp increase of deployment in recent years.
To apply machine learning (ML) in such applications, the traditional way of downloading satellite data such as imagery to a ground station (GS) is not desirable.
We show that existing FL solutions do not fit well in such LEO constellation scenarios because of significant challenges such as excessive convergence delay and unreliable wireless channels.
arXiv Detail & Related papers (2022-05-15T08:22:52Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
This paper aims to integrate two synergetic technologies, federated learning (FL) and width-adjustable slimmable neural network (SNN)
FL preserves data privacy by exchanging the locally trained models of mobile devices. SNNs are however non-trivial, particularly under wireless connections with time-varying channel conditions.
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2021-12-05T11:17:17Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.