Federated Learning in NTNs: Design, Architecture and Challenges
- URL: http://arxiv.org/abs/2503.07272v1
- Date: Mon, 10 Mar 2025 12:53:45 GMT
- Title: Federated Learning in NTNs: Design, Architecture and Challenges
- Authors: Amin Farajzadeh, Animesh Yadav, Halim Yanikomeroglu,
- Abstract summary: We propose a distributed hierarchical learning (HFL) framework within the architecture of non-terrestrial networks (NTNs)<n>Our framework integrates both low-Earth orbit (LEO) satellites and ground clients in the FL training process while utilizing geostationary orbit (GEO) and medium-Earth orbit (MEO) satellites as relays.<n>The proposed framework offers several key benefits: (i) enhanced privacy through the decentralization of the FL constellation, (ii) improved model accuracy and reduced training loss while balancing latency, (iii) increased scalability of FL systems through ubiquitous connectivity by utilizing MEO and GEO satellites, and (iv
- Score: 21.446301665317378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-terrestrial networks (NTNs) are emerging as a core component of future 6G communication systems, providing global connectivity and supporting data-intensive applications. In this paper, we propose a distributed hierarchical federated learning (HFL) framework within the NTN architecture, leveraging a high altitude platform station (HAPS) constellation as intermediate distributed FL servers. Our framework integrates both low-Earth orbit (LEO) satellites and ground clients in the FL training process while utilizing geostationary orbit (GEO) and medium-Earth orbit (MEO) satellites as relays to exchange FL global models across other HAPS constellations worldwide, enabling seamless, global-scale learning. The proposed framework offers several key benefits: (i) enhanced privacy through the decentralization of the FL mechanism by leveraging the HAPS constellation, (ii) improved model accuracy and reduced training loss while balancing latency, (iii) increased scalability of FL systems through ubiquitous connectivity by utilizing MEO and GEO satellites, and (iv) the ability to use FL data, such as resource utilization metrics, to further optimize the NTN architecture from a network management perspective. A numerical study demonstrates the proposed framework's effectiveness, with improved model accuracy, reduced training loss, and efficient latency management. The article also includes a brief review of FL in NTNs and highlights key challenges and future research directions.
Related papers
- Fed-KAN: Federated Learning with Kolmogorov-Arnold Networks for Traffic Prediction [10.34834816497689]
Traditional centralized learning approaches face major challenges in such networks due to high latency, intermittent connectivity and limited bandwidth.<n>Existing FL models, such as Federated Learning with Multi-Layer Perceptrons (Fed-MLP), can struggle with high computational complexity and poor adaptability to dynamic environments.<n>This paper provides a detailed analysis for Federated Learning with Kolmogorov-Arnold Networks (Fed-KAN)<n>Our results show that Fed-KAN can achieve a 77.39% reduction in average test loss compared to Fed-MLP, highlighting its improved performance and better generalization ability.
arXiv Detail & Related papers (2025-02-28T20:04:53Z) - FedMeld: A Model-dispersal Federated Learning Framework for Space-ground Integrated Networks [29.49615352723995]
Space-ground integrated networks (SGINs) are expected to deliver artificial intelligence (AI) services to every corner of the world.<n>One mission of SGINs is to support federated learning (FL) at a global scale.<n>We propose an infrastructure-free federated learning framework based on a model dispersal (FedMeld) strategy.
arXiv Detail & Related papers (2024-12-23T02:58:12Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
A large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX.
Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc.
We propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites.
arXiv Detail & Related papers (2023-11-02T14:47:06Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Olive Branch Learning: A Topology-Aware Federated Learning Framework for
Space-Air-Ground Integrated Network [19.059950250921926]
Training AI models centrally with the assistance of SAGIN faces the challenges of highly constrained network topology, inefficient data transmission, and privacy issues.
We first propose a novel topology-aware federated learning framework for the SAGIN, namely Olive Branch Learning (OBL)
We extend our OBL framework and CNASA algorithm to adapt to more complex multi-orbit satellite networks.
arXiv Detail & Related papers (2022-12-02T14:51:42Z) - Joint Superposition Coding and Training for Federated Learning over
Multi-Width Neural Networks [52.93232352968347]
This paper aims to integrate two synergetic technologies, federated learning (FL) and width-adjustable slimmable neural network (SNN)
FL preserves data privacy by exchanging the locally trained models of mobile devices. SNNs are however non-trivial, particularly under wireless connections with time-varying channel conditions.
We propose a communication and energy-efficient SNN-based FL (named SlimFL) that jointly utilizes superposition coding (SC) for global model aggregation and superposition training (ST) for updating local models.
arXiv Detail & Related papers (2021-12-05T11:17:17Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - Federated Learning With Quantized Global Model Updates [84.55126371346452]
We study federated learning, which enables mobile devices to utilize their local datasets to train a global model.
We introduce a lossy FL (LFL) algorithm, in which both the global model and the local model updates are quantized before being transmitted.
arXiv Detail & Related papers (2020-06-18T16:55:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.