SyNeg: LLM-Driven Synthetic Hard-Negatives for Dense Retrieval
- URL: http://arxiv.org/abs/2412.17250v1
- Date: Mon, 23 Dec 2024 03:49:00 GMT
- Title: SyNeg: LLM-Driven Synthetic Hard-Negatives for Dense Retrieval
- Authors: Xiaopeng Li, Xiangyang Li, Hao Zhang, Zhaocheng Du, Pengyue Jia, Yichao Wang, Xiangyu Zhao, Huifeng Guo, Ruiming Tang,
- Abstract summary: The performance of Dense retrieval (DR) is significantly influenced by the quality of negative sampling.
Recent advancements in large language models (LLMs) offer an innovative solution by generating contextually rich and diverse negative samples.
In this work, we present a framework that harnesses LLMs to synthesize high-quality hard negative samples.
- Score: 45.971786380884126
- License:
- Abstract: The performance of Dense retrieval (DR) is significantly influenced by the quality of negative sampling. Traditional DR methods primarily depend on naive negative sampling techniques or on mining hard negatives through external retriever and meticulously crafted strategies. However, naive negative sampling often fails to adequately capture the accurate boundaries between positive and negative samples, whereas existing hard negative sampling methods are prone to false negatives, resulting in performance degradation and training instability. Recent advancements in large language models (LLMs) offer an innovative solution to these challenges by generating contextually rich and diverse negative samples. In this work, we present a framework that harnesses LLMs to synthesize high-quality hard negative samples. We first devise a \textit{multi-attribute self-reflection prompting strategy} to direct LLMs in hard negative sample generation. Then, we implement a \textit{hybrid sampling strategy} that integrates these synthetic negatives with traditionally retrieved negatives, thereby stabilizing the training process and improving retrieval performance. Extensive experiments on five benchmark datasets demonstrate the efficacy of our approach, and code is also publicly available.
Related papers
- Negating Negatives: Alignment with Human Negative Samples via Distributional Dispreference Optimization [37.8788435790632]
Large language models (LLMs) have revolutionized the role of AI, yet pose potential social risks.
Existing methods rely on high-quality positive-negative training pairs, suffering from noisy positive responses that are barely distinguishable from negative ones.
We propose Distributional Dispreference Optimization (D$2$O), which maximizes the discrepancy between dispreferred responses and the generated non-negative ones.
arXiv Detail & Related papers (2024-03-06T03:02:38Z) - Your Negative May not Be True Negative: Boosting Image-Text Matching
with False Negative Elimination [62.18768931714238]
We propose a novel False Negative Elimination (FNE) strategy to select negatives via sampling.
The results demonstrate the superiority of our proposed false negative elimination strategy.
arXiv Detail & Related papers (2023-08-08T16:31:43Z) - Language Model Pre-training on True Negatives [109.73819321246062]
Discriminative pre-trained language models (PLMs) learn to predict original texts from intentionally corrupted ones.
Existing PLMs simply treat all corrupted texts as equal negative without any examination.
We design enhanced pre-training methods to counteract false negative predictions and encourage pre-training language models on true negatives.
arXiv Detail & Related papers (2022-12-01T12:24:19Z) - SimANS: Simple Ambiguous Negatives Sampling for Dense Text Retrieval [126.22182758461244]
We show that according to the measured relevance scores, the negatives ranked around the positives are generally more informative and less likely to be false negatives.
We propose a simple ambiguous negatives sampling method, SimANS, which incorporates a new sampling probability distribution to sample more ambiguous negatives.
arXiv Detail & Related papers (2022-10-21T07:18:05Z) - Generating Negative Samples for Sequential Recommendation [83.60655196391855]
We propose to Generate Negative Samples (items) for Sequential Recommendation (SR)
A negative item is sampled at each time step based on the current SR model's learned user preferences toward items.
Experiments on four public datasets verify the importance of providing high-quality negative samples for SR.
arXiv Detail & Related papers (2022-08-07T05:44:13Z) - Hard Negative Sampling Strategies for Contrastive Representation
Learning [4.1531215150301035]
UnReMix is a hard negative sampling strategy that takes into account anchor similarity, model uncertainty and representativeness.
Experimental results on several benchmarks show that UnReMix improves negative sample selection, and subsequently downstream performance when compared to state-of-the-art contrastive learning methods.
arXiv Detail & Related papers (2022-06-02T17:55:15Z) - Rethinking Negative Sampling for Unlabeled Entity Problem in Named
Entity Recognition [47.273602658066196]
Unlabeled entities seriously degrade the performances of named entity recognition models.
We analyze why negative sampling succeeds both theoretically and empirically.
We propose a weighted and adaptive sampling distribution for negative sampling.
arXiv Detail & Related papers (2021-08-26T07:02:57Z) - Contrastive Learning with Hard Negative Samples [80.12117639845678]
We develop a new family of unsupervised sampling methods for selecting hard negative samples.
A limiting case of this sampling results in a representation that tightly clusters each class, and pushes different classes as far apart as possible.
The proposed method improves downstream performance across multiple modalities, requires only few additional lines of code to implement, and introduces no computational overhead.
arXiv Detail & Related papers (2020-10-09T14:18:53Z) - Simplify and Robustify Negative Sampling for Implicit Collaborative
Filtering [42.832851785261894]
In this paper, we first provide a novel understanding of negative instances by empirically observing that only a few instances are potentially important for model learning.
We then tackle the untouched false negative problem by favouring high-variance samples stored in memory.
Empirical results on two synthetic datasets and three real-world datasets demonstrate both robustness and superiorities of our negative sampling method.
arXiv Detail & Related papers (2020-09-07T19:08:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.