Can LLM-Driven Hard Negative Sampling Empower Collaborative Filtering? Findings and Potentials
- URL: http://arxiv.org/abs/2504.04726v1
- Date: Mon, 07 Apr 2025 04:39:45 GMT
- Title: Can LLM-Driven Hard Negative Sampling Empower Collaborative Filtering? Findings and Potentials
- Authors: Chu Zhao, Enneng Yang, Yuting Liu, Jianzhe Zhao, Guibing Guo, Xingwei Wang,
- Abstract summary: Hard negative samples can accelerate model convergence and optimize decision boundaries.<n>This paper introduces the concept of Semantic Negative Sampling.<n>We propose a framework called HNLMRec, based on fine-tuning LLMs supervised by collaborative signals.
- Score: 9.668242919588199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hard negative samples can accelerate model convergence and optimize decision boundaries, which is key to improving the performance of recommender systems. Although large language models (LLMs) possess strong semantic understanding and generation capabilities, systematic research has not yet been conducted on how to generate hard negative samples effectively. To fill this gap, this paper introduces the concept of Semantic Negative Sampling and exploreshow to optimize LLMs for high-quality, hard negative sampling. Specifically, we design an experimental pipeline that includes three main modules, profile generation, semantic negative sampling, and semantic alignment, to verify the potential of LLM-driven hard negative sampling in enhancing the accuracy of collaborative filtering (CF). Experimental results indicate that hard negative samples generated based on LLMs, when semantically aligned and integrated into CF, can significantly improve CF performance, although there is still a certain gap compared to traditional negative sampling methods. Further analysis reveals that this gap primarily arises from two major challenges: noisy samples and lack of behavioral constraints. To address these challenges, we propose a framework called HNLMRec, based on fine-tuning LLMs supervised by collaborative signals. Experimental results show that this framework outperforms traditional negative sampling and other LLM-driven recommendation methods across multiple datasets, providing new solutions for empowering traditional RS with LLMs. Additionally, we validate the excellent generalization ability of the LLM-based semantic negative sampling method on new datasets, demonstrating its potential in alleviating issues such as data sparsity, popularity bias, and the problem of false hard negative samples. Our implementation code is available at https://github.com/user683/HNLMRec.
Related papers
- Concept-as-Tree: Synthetic Data is All You Need for VLM Personalization [34.61646655931679]
Concept-as-Tree (CaT) represents a concept as a tree structure, enabling the data generation of positive and negative samples.<n>With a well-designed data filtering strategy, our CaT framework can ensure the quality of generated data.<n>This work is the first controllable synthetic data pipeline for VLM personalization.
arXiv Detail & Related papers (2025-03-17T09:55:01Z) - Preference Leakage: A Contamination Problem in LLM-as-a-judge [69.96778498636071]
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods.
In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators.
arXiv Detail & Related papers (2025-02-03T17:13:03Z) - SyNeg: LLM-Driven Synthetic Hard-Negatives for Dense Retrieval [45.971786380884126]
The performance of Dense retrieval (DR) is significantly influenced by the quality of negative sampling.<n>Recent advancements in large language models (LLMs) offer an innovative solution by generating contextually rich and diverse negative samples.<n>In this work, we present a framework that harnesses LLMs to synthesize high-quality hard negative samples.
arXiv Detail & Related papers (2024-12-23T03:49:00Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - Turning Dust into Gold: Distilling Complex Reasoning Capabilities from
LLMs by Leveraging Negative Data [15.088675135566646]
Large Language Models (LLMs) have performed well on various reasoning tasks, but their inaccessibility and numerous parameters hinder wide application in practice.
We propose a model specialization framework to distill LLMs with negative samples besides positive ones.
We conduct extensive experiments across arithmetic reasoning tasks to demonstrate the role of negative data in distillation from LLM.
arXiv Detail & Related papers (2023-12-20T08:28:36Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Amortizing intractable inference in large language models [56.92471123778389]
We use amortized Bayesian inference to sample from intractable posterior distributions.
We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training.
As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem.
arXiv Detail & Related papers (2023-10-06T16:36:08Z) - Dimension Independent Mixup for Hard Negative Sample in Collaborative
Filtering [36.26865960551565]
Negative sampling plays a vital role in training CF-based models with implicit feedback.
We propose Dimension Independent Mixup for Hard Negative Sampling (DINS), which is the first Area-wise sampling method for training CF-based models.
Our work contributes a new perspective, introduces Area-wise sampling, and presents DINS as a novel approach for negative sampling.
arXiv Detail & Related papers (2023-06-28T04:03:31Z) - Rethinking Collaborative Metric Learning: Toward an Efficient
Alternative without Negative Sampling [156.7248383178991]
Collaborative Metric Learning (CML) paradigm has aroused wide interest in the area of recommendation systems (RS)
We find that negative sampling would lead to a biased estimation of the generalization error.
Motivated by this, we propose an efficient alternative without negative sampling for CML named textitSampling-Free Collaborative Metric Learning (SFCML)
arXiv Detail & Related papers (2022-06-23T08:50:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.