論文の概要: A Coalition Game for On-demand Multi-modal 3D Automated Delivery System
- arxiv url: http://arxiv.org/abs/2412.17252v1
- Date: Mon, 23 Dec 2024 03:50:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:56:03.288128
- Title: A Coalition Game for On-demand Multi-modal 3D Automated Delivery System
- Title(参考訳): オンデマンドマルチモーダル3次元自動配送システムのための協調ゲーム
- Authors: Farzan Moosavi, Bilal Farooq,
- Abstract要約: 2つのオーバレイネットワークで動作するUAVとADRの連合ゲームとして,マルチモーダルな自律デリバリ最適化フレームワークを導入する。
このフレームワークは、高密度領域、道路ベースのルーティング、実際の運用課題など、都市環境におけるラストマイルデリバリに対処する。
- 参考スコア(独自算出の注目度): 4.378407481656902
- License:
- Abstract: We introduce a multi-modal autonomous delivery optimization framework as a coalition game for a fleet of UAVs and ADRs operating in two overlaying networks to address last-mile delivery in urban environments, including high-density areas, road-based routing, and real-world operational challenges. The problem is defined as multiple depot pickup and delivery with time windows constrained over operational restrictions, such as vehicle battery limitation, precedence time window, and building obstruction. Subsequently, the coalition game theory is applied to investigate cooperation structures among the modes to capture how strategic collaboration among vehicles can improve overall routing efficiency. To do so, a generalized reinforcement learning model is designed to evaluate the cost-sharing and allocation to different coalitions for which sub-additive property and non-empty core exist. Our methodology leverages an end-to-end deep multi-agent policy gradient method augmented by a novel spatio-temporal adjacency neighbourhood graph attention network and transformer architecture using a heterogeneous edge-enhanced attention model. Conducting several numerical experiments on last-mile delivery applications, the result from the case study in the city of Mississauga shows that despite the incorporation of an extensive network in the graph for two modes and a complex training structure, the model addresses realistic operational constraints and achieves high-quality solutions compared with the existing transformer-based and heuristics methods and can perform well on non-homogeneous data distribution, generalizes well on the different scale and configuration, and demonstrate a robust performance under stochastic scenarios subject to wind speed and direction.
- Abstract(参考訳): 我々は,都市環境における最終マイルの配送に対処するため,UAVとADRが2つのオーバーレイネットワークで運用する連立ゲームとして,高密度領域,道路ベースのルーティング,実運用上の課題を含むマルチモーダル自律配送最適化フレームワークを導入する。
この問題は、車両のバッテリ制限、先行時間窓、建築妨害といった運用上の制限に制約された時間窓を備えた複数の補給所のピックアップと配送として定義される。
その後、連立ゲーム理論を適用して、車両間の戦略的協調が全体のルーティング効率をいかに向上させるかを把握する。
そのため、補助的資産と空でないコアが存在する異なるアライアンスに対するコスト共有とアロケーションを評価するために、一般化された強化学習モデルが設計されている。
提案手法は,新しい時空間隣接グラフアテンションネットワークと異種エッジ強化アテンションモデルを用いたトランスフォーマーアーキテクチャにより,エンドツーエンドの深層多エージェントポリシー勾配法を活用する。
最終マイル配送の応用に関するいくつかの数値実験を行ったところ、ミシサウガ市におけるケーススタディの結果、グラフに2つのモードと複雑なトレーニング構造のための広範なネットワークが組み込まれているにもかかわらず、モデルは現実的な運用上の制約に対処し、既存のトランスフォーマーベースおよびヒューリスティックス法と比較して高品質なソリューションを実現し、非均一なデータ分散をうまく実行し、異なるスケールと構成をよく一般化し、風速と方向の確率的シナリオ下で堅牢な性能を示すことを示した。
関連論文リスト
- Cross-Domain Transfer Learning using Attention Latent Features for Multi-Agent Trajectory Prediction [4.292918274985369]
本稿では,トランスフォーマーモデルにおけるアテンション表現に対して,クロスドメイン適応を行う新しい時空間軌道予測フレームワークを提案する。
グラフ畳み込みネットワークは、マルチエージェント車両間の複雑な時空間相互作用を正確にモデル化する動的グラフ特徴埋め込みを構築するためにも統合される。
論文 参考訳(メタデータ) (2024-11-09T06:39:44Z) - Generalizable Spacecraft Trajectory Generation via Multimodal Learning with Transformers [14.176630393074149]
本稿では,様々な問題構成にまたがって一般化する新しいトラジェクトリ生成フレームワークを提案する。
我々は、データソースから学習できる高容量トランスフォーマーニューラルネットワークを活用している。
このフレームワークはフリーフライアプラットフォームでのシミュレーションと実験を通じて検証されている。
論文 参考訳(メタデータ) (2024-10-15T15:55:42Z) - Cooperative Path Planning with Asynchronous Multiagent Reinforcement Learning [4.640948267127441]
複数のソース-決定ペア(MSD)を持つ最短経路問題(SPP)
本稿では,最短経路問題(SPP)について,複数の経路対,すなわちMSD-SPPを用いて検討し,最短経路の平均走行時間を最小化する。
論文 参考訳(メタデータ) (2024-09-01T15:48:14Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Multi-objective Optimal Roadside Units Deployment in Urban Vehicular Networks [7.951541004150428]
都市車両網では,交通効率,安全,関連サービスの重要性が増している。
このようなネットワーク内では、道路側ユニット(RSU)が通信を容易にする中間体として機能する。
都市環境においては、建物、庭園、湖沼、その他のインフラなど様々な障害が存在することが、RSUの展開に課題を提起している。
論文 参考訳(メタデータ) (2024-01-14T05:02:12Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
信号のない道路交差点での協調作業は、連結車両と自動車両の安全運転交通スループットを向上させることを目的としている。
我々はモデルフリーなマルコフ決定プロセス(MDP)を導入し、深層強化学習フレームワークにおける双遅延Deep Deterministic Policy(TD3)に基づく戦略によりそれに取り組む。
提案手法は, 準定常調整シナリオにおいて, ほぼ最適性能を達成し, 現実的な連続流れの制御を大幅に改善できることが示唆された。
論文 参考訳(メタデータ) (2022-05-03T02:56:02Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
我々は、Cross-Modal Message Propagation Network (CMMPNet)と呼ばれる新しいニューラルネットワークフレームワークを紹介する。
CMMPNetは、モダリティ固有の表現学習のための2つのディープオートエンコーダと、クロスモーダル表現洗練のためのテーラー設計のデュアルエンハンスメントモジュールで構成されている。
実世界の3つのベンチマーク実験により, CMMPNetによる堅牢な道路抽出の有効性が示された。
論文 参考訳(メタデータ) (2021-11-30T04:30:10Z) - Optimal transport in multilayer networks [68.8204255655161]
本稿では,各層上の最適フローが,コストの最小化に寄与するモデルを提案する。
アプリケーションとして,各層が異なる輸送システムに関連付けられている交通ネットワークを考察する。
この結果の例をボルドー市とバスと路面電車の2層ネットワークで示し、ある状況下では路面電車網の存在が道路網の交通を著しく覆い隠している。
論文 参考訳(メタデータ) (2021-06-14T07:33:09Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
疎結合グラフの学習値に基づいてマルチエージェントルーティングを行うことができるグラフニューラルネットワークに基づくモデルを提案する。
最大25ノードのグラフ上で2つのエージェントでトレーニングしたモデルでは,より多くのエージェントやノードを持つ状況に容易に一般化できることが示されている。
論文 参考訳(メタデータ) (2020-07-09T22:16:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。