A Coalition Game for On-demand Multi-modal 3D Automated Delivery System
- URL: http://arxiv.org/abs/2412.17252v2
- Date: Tue, 22 Jul 2025 22:52:59 GMT
- Title: A Coalition Game for On-demand Multi-modal 3D Automated Delivery System
- Authors: Farzan Moosavi, Bilal Farooq,
- Abstract summary: We introduce a coalition game for a fleet of UAVs and ADRs operating in two overlaying networks to address last-mile delivery in urban environments.<n>We investigate cooperation structures among the modes to capture how strategic collaboration can improve overall routing efficiency.<n>Several numerical experiments on last-mile delivery applications have been conducted, showing the results from the case study in the city of Mississauga.
- Score: 4.378407481656902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a multi-modal autonomous delivery optimization framework as a coalition game for a fleet of UAVs and ADRs operating in two overlaying networks to address last-mile delivery in urban environments, including high-density areas and time-critical applications. The problem is defined as multiple depot pickup and delivery with time windows constrained over operational restrictions, such as vehicle battery limitation, precedence time window, and building obstruction. Utilizing the coalition game theory, we investigate cooperation structures among the modes to capture how strategic collaboration can improve overall routing efficiency. To do so, a generalized reinforcement learning model is designed to evaluate the cost-sharing and allocation to different modes to learn the cooperative behaviour with respect to various realistic scenarios. Our methodology leverages an end-to-end deep multi-agent policy gradient method augmented by a novel spatio-temporal adjacency neighbourhood graph attention network using a heterogeneous edge-enhanced attention model and transformer architecture. Several numerical experiments on last-mile delivery applications have been conducted, showing the results from the case study in the city of Mississauga, which shows that despite the incorporation of an extensive network in the graph for two modes and a complex training structure, the model addresses realistic operational constraints and achieves high-quality solutions compared with the existing transformer-based and classical methods. It can perform well on non-homogeneous data distribution, generalizes well on different scales and configurations, and demonstrates a robust cooperative performance under stochastic scenarios across various tasks, which is effectively reflected by coalition analysis and cost allocation to signify the advantage of cooperation.
Related papers
- Hierarchical Task Offloading for UAV-Assisted Vehicular Edge Computing via Deep Reinforcement Learning [11.695622067301128]
We propose a dual-layer UAV-assisted edge computing architecture based on partial offloading.<n>The proposed architecture enables efficient integration and coordination of heterogeneous resources.<n>We show that the proposed approach outperforms several baselines in task completion rate, system efficiency, and convergence speed.
arXiv Detail & Related papers (2025-07-08T07:10:52Z) - Flow-Through Tensors: A Unified Computational Graph Architecture for Multi-Layer Transportation Network Optimization [20.685856719515026]
Flow Throughs (FTT) is a unified computational graph architecture that connects origin destination flows, path, probabilities and link travel times as interconnected tensors.<n>Our framework makes three key contributions: first, it establishes a consistent mathematical structure that enables gradient-based optimization across previously separate modeling elements.<n>Second, it supports multidimensional analysis of traffic patterns over time, space, and user groups with precise quantification of system efficiency.
arXiv Detail & Related papers (2025-06-30T06:42:23Z) - Multimodal Fused Learning for Solving the Generalized Traveling Salesman Problem in Robotic Task Planning [11.697279328699489]
We propose a Multimodal Fused Learning framework to solve the Generalized Traveling Salesman Problem (GTSP)<n>We first introduce a coordinate-based image builder that transforms GTSP instances into spatially informative representations.<n>We then design an adaptive resolution scaling strategy to enhance adaptability across different problem scales, and develop a multimodal fusion module.
arXiv Detail & Related papers (2025-06-20T11:51:52Z) - Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
Vehicle Routing Problems (VRP) are an extension of the Traveling Salesperson Problem and are a fundamental NP-hard challenge in Evolutionary optimization.
We introduce a novel optimization framework that uses a reinforcement learning agent - trained on prior instances - to quickly generate initial solutions, which are then further optimized by genetic algorithms.
For example, EARLI handles vehicle routing with 500 locations within 1s, 10x faster than current solvers for the same solution quality, enabling applications like real-time and interactive routing.
arXiv Detail & Related papers (2025-04-08T15:21:01Z) - Robo-taxi Fleet Coordination at Scale via Reinforcement Learning [21.266509380044912]
This work introduces a novel decision-making framework that unites mathematical modeling with data-driven techniques.<n>We present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework.<n>In particular, we present the AMoD coordination problem through the lens of reinforcement learning and propose a graph network-based framework.
arXiv Detail & Related papers (2025-04-08T15:19:41Z) - Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy [56.424032454461695]
We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences.
Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations.
Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces.
arXiv Detail & Related papers (2025-03-25T15:19:56Z) - Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications.
This work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users.
arXiv Detail & Related papers (2025-02-09T09:15:47Z) - MAGNNET: Multi-Agent Graph Neural Network-based Efficient Task Allocation for Autonomous Vehicles with Deep Reinforcement Learning [2.5022287664959446]
We introduce a novel framework that integrates graph neural networks (GNNs) with a centralized training and decentralized execution (CTDE) paradigm.
Our approach enables unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) to dynamically allocate tasks efficiently without necessitating central coordination.
arXiv Detail & Related papers (2025-02-04T13:29:56Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)<n>We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.<n>Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Cross-Domain Transfer Learning using Attention Latent Features for Multi-Agent Trajectory Prediction [4.292918274985369]
We propose a novel spatial-temporal trajectory prediction framework that performs cross-domain adaption on the attention representation of a Transformer-based model.
A graph convolutional network is also integrated to construct dynamic graph feature embeddings that accurately model the complex spatial-temporal interactions between the multi-agent vehicles.
arXiv Detail & Related papers (2024-11-09T06:39:44Z) - Generalizable Spacecraft Trajectory Generation via Multimodal Learning with Transformers [14.176630393074149]
We present a novel trajectory generation framework that generalizes across diverse problem configurations.
We leverage high-capacity transformer neural networks capable of learning from data sources.
The framework is validated through simulations and experiments on a free-flyer platform.
arXiv Detail & Related papers (2024-10-15T15:55:42Z) - Cooperative Path Planning with Asynchronous Multiagent Reinforcement Learning [4.640948267127441]
shortest path problem (SPP) with multiple source-destination pairs (MSD)
In this paper, we study the shortest path problem (SPP) with multiple source-destination pairs (MSD), namely MSD-SPP, to minimize average travel time of all shortest paths.
arXiv Detail & Related papers (2024-09-01T15:48:14Z) - Multi-objective Optimal Roadside Units Deployment in Urban Vehicular Networks [7.951541004150428]
The significance of transportation efficiency, safety, and related services is increasing in urban vehicular networks.
Within such networks, roadside units (RSUs) serve as intermediates in facilitating communication.
In urban environments, the presence of various obstacles, such as buildings, gardens, lakes, and other infrastructure, poses challenges for the deployment of RSUs.
arXiv Detail & Related papers (2024-01-14T05:02:12Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Pruning Self-attentions into Convolutional Layers in Single Path [89.55361659622305]
Vision Transformers (ViTs) have achieved impressive performance over various computer vision tasks.
We propose Single-Path Vision Transformer pruning (SPViT) to efficiently and automatically compress the pre-trained ViTs.
Our SPViT can trim 52.0% FLOPs for DeiT-B and get an impressive 0.6% top-1 accuracy gain simultaneously.
arXiv Detail & Related papers (2021-11-23T11:35:54Z) - Deployment Optimization for Shared e-Mobility Systems with Multi-agent
Deep Neural Search [15.657420177295624]
Shared e-mobility services have been widely tested and piloted in cities across the globe.
This paper studies how to deploy and manage their infrastructure across space and time, so that the services are ubiquitous to the users while in sustainable profitability.
We tackle this by designing a high-fidelity simulation environment, which abstracts the key operation details of the shared e-mobility systems at fine-granularity.
arXiv Detail & Related papers (2021-11-03T11:37:11Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.