論文の概要: B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners
- arxiv url: http://arxiv.org/abs/2412.17256v1
- Date: Mon, 23 Dec 2024 03:58:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:45.656667
- Title: B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners
- Title(参考訳): B-STaR:自己学習型共振器における探索・爆発のモニタリングとバランス
- Authors: Weihao Zeng, Yuzhen Huang, Lulu Zhao, Yijun Wang, Zifei Shan, Junxian He,
- Abstract要約: 自己改善は、パフォーマンスを向上させる主要な方法として現れています。
本稿では,この反復的プロセスにおいて2つの重要な要因をモニタする手法を提案し,提案する。
B-STaRは、反復的な構成を調整し、探索とエクスプロイトのバランスをとる自己学習推論フレームワークである。
- 参考スコア(独自算出の注目度): 18.960920426485163
- License:
- Abstract: In the absence of extensive human-annotated data for complex reasoning tasks, self-improvement -- where models are trained on their own outputs -- has emerged as a primary method for enhancing performance. However, the critical factors underlying the mechanism of these iterative self-improving methods remain poorly understood, such as under what conditions self-improvement is effective, and what are the bottlenecks in the current iterations. In this work, we identify and propose methods to monitor two pivotal factors in this iterative process: (1) the model's ability to generate sufficiently diverse responses (exploration); and (2) the effectiveness of external rewards in distinguishing high-quality candidates from lower-quality ones (exploitation). Using mathematical reasoning as a case study, we begin with a quantitative analysis to track the dynamics of exploration and exploitation, discovering that a model's exploratory capabilities rapidly deteriorate over iterations, and the effectiveness of exploiting external rewards diminishes as well. Motivated by these findings, we introduce B-STaR, a Self-Taught Reasoning framework that autonomously adjusts configurations across iterations to Balance exploration and exploitation, thereby optimizing the self-improving effectiveness based on the current policy model and available rewards. Our experiments on mathematical reasoning, coding, and commonsense reasoning demonstrate that B-STaR not only enhances the model's exploratory capabilities throughout training but also achieves a more effective balance between exploration and exploitation, leading to superior performance.
- Abstract(参考訳): 複雑な推論タスクのための広範な人手によるデータがないため、自己改善 -- モデルが自身のアウトプットでトレーニングされる -- は、パフォーマンスを向上させる主要な方法として現れています。
しかしながら、これらの反復的自己改善手法のメカニズムの根底にある重要な要素は、例えば、自己改善が有効である状況や、現在の反復におけるボトルネックについて、理解されていないままである。
本研究では,(1)モデルが十分な多様な応答(探索)を生成できる能力,(2)高品質な候補と低品質な候補(探索)を区別する外部報酬の有効性について,この反復的プロセスにおいて2つの重要な要因をモニタリングする方法を同定し,提案する。
数理推論をケーススタディとして用いて、探索と搾取のダイナミクスを追跡する定量的解析から始め、モデルの探索能力が反復よりも急速に低下し、外部報酬を活用できる効果も低下することを発見した。
これらの知見に触発されたB-STaRは、イテレーション間で構成を自律的に調整し、バランス探索とエクスプロイトを行い、現在のポリシーモデルと利用可能な報酬に基づいて自己改善の有効性を最適化する自己学習推論フレームワークである。
数学的推論,コーディング,コモンセンス推論に関する実験により,B-STaRは学習を通してモデルの探索能力を高めるだけでなく,探索とエクスプロイトのバランスが向上し,優れた性能が得られることが示された。
関連論文リスト
- Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
本稿では,連続制御タスクにおけるサンプル効率の高い探索手法について検討する。
本稿では,予測モデルと非政治学習要素を組み込んだRLアルゴリズムを提案する。
パラメーターのオーバーヘッドを発生させずに本質的な報酬を導き出す。
論文 参考訳(メタデータ) (2024-03-31T11:39:11Z) - Assessing the Impact of Distribution Shift on Reinforcement Learning
Performance [0.0]
強化学習(RL)は独自の課題に直面する。
点推定と訓練中の最適方針への収束を成功させるプロットの比較は、実験装置への過度な適合や依存を阻害する可能性がある。
本稿では,分散シフト下でのRLアルゴリズムのロバスト性を評価するための評価手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T23:50:55Z) - Understanding, Predicting and Better Resolving Q-Value Divergence in
Offline-RL [86.0987896274354]
まず、オフラインRLにおけるQ値推定のばらつきの主な原因として、基本パターン、自己励起を同定する。
そこで本研究では,Q-network の学習における進化特性を測定するために,SEEM(Self-Excite Eigen Value Measure)尺度を提案する。
われわれの理論では、訓練が早期に発散するかどうかを確実に決定できる。
論文 参考訳(メタデータ) (2023-10-06T17:57:44Z) - Understanding Self-attention Mechanism via Dynamical System Perspective [58.024376086269015]
SAM(Self-attention mechanism)は、人工知能の様々な分野で広く使われている。
常微分方程式(ODE)の高精度解における固有剛性現象(SP)は,高性能ニューラルネットワーク(NN)にも広く存在することを示す。
SAMは、本質的なSPを測定するためのモデルの表現能力を高めることができる剛性対応のステップサイズ適応器でもあることを示す。
論文 参考訳(メタデータ) (2023-08-19T08:17:41Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
箱なしの敵攻撃は、AIシステムにとってより実用的で難しいものになりつつある。
本稿では,サロゲートモデルとして基礎モデルを導入することにより,逆攻撃を下流タスクとして再放送する。
論文 参考訳(メタデータ) (2023-07-13T08:10:48Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
AMPLIFY(Post Hoc Explanations)を用いたインコンテキスト学習の活用によるモデル性能向上のための新しいフレームワークを提案する。
我々は,各入力特徴がモデル予測に与える影響を抽出し,帰属スコア(説明)を出力するポストホック説明手法を活用する。
AMPLIFYは,幅広いタスクに対して約10~25%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-19T04:46:04Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) は、ディープニューラルネットワークの堅牢性を高める効果的なアプローチである。
我々は、Contrastive Energy-based Models(CEM)と呼ばれる統合確率的枠組みを開発することにより、この現象をデミステレーションする。
本稿では,逆学習法とサンプリング法を開発するための原則的手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T05:33:34Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEEは楽観的な探索と重み付けによる搾取からなるモデルアンサンブル法である。
我々の手法は、特にサンプル複雑性において、他のモデルフリーおよびモデルベース最先端手法よりも優れています。
論文 参考訳(メタデータ) (2021-07-05T07:18:20Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
本稿では,将来期待される新しい自由エネルギーを最小化するアクティブ推論エージェントを提案する。
我々のモデルは、非常に高いサンプル効率でスパース・リワード問題を解くことができる。
また、複雑な目的の表現を単純化する報奨関数から事前モデルを近似する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-06-04T10:03:36Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
エンパワーメント原理は 直立位置での 力学系の教師なし安定化を可能にする
本稿では,ガウスチャネルとして動的システムのトレーニング可能な表現に基づく代替解を提案する。
提案手法は, サンプルの複雑さが低く, 訓練時より安定であり, エンパワーメント機能の本質的特性を有し, 画像からエンパワーメントを推定できることを示す。
論文 参考訳(メタデータ) (2020-07-14T21:10:16Z) - Reinforcement Learning through Active Inference [62.997667081978825]
アクティブ推論のアイデアが従来の強化学習アプローチをどのように強化するかを示す。
我々は、将来望まれる自由エネルギーという、意思決定のための新しい目標を開発し、実装する。
得られたアルゴリズムが探索および利用に成功し、また、スパース、ウェル形状、報酬のないいくつかの挑戦的RLベンチマークにおいて頑健な性能を達成することを実証した。
論文 参考訳(メタデータ) (2020-02-28T10:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。