論文の概要: An Intrinsically Explainable Approach to Detecting Vertebral Compression Fractures in CT Scans via Neurosymbolic Modeling
- arxiv url: http://arxiv.org/abs/2412.17258v1
- Date: Mon, 23 Dec 2024 04:01:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:23.005870
- Title: An Intrinsically Explainable Approach to Detecting Vertebral Compression Fractures in CT Scans via Neurosymbolic Modeling
- Title(参考訳): ニューロシンボリック・モデリングによるCTスキャンにおける経皮的圧迫骨折の検出
- Authors: Blanca Inigo, Yiqing Shen, Benjamin D. Killeen, Michelle Song, Axel Krieger, Christopher Bradley, Mathias Unberath,
- Abstract要約: 脊椎圧迫骨折(VCFs)は骨粗しょう症の一般的な原因であり、潜在的に重篤な結果である。
機会論的診断のような高度なシナリオでは、モデル解釈可能性がAIレコメンデーションの採用の鍵となる。
我々はCTボリュームにおけるVCF検出のためのニューロシンボリックアプローチを導入する。
- 参考スコア(独自算出の注目度): 9.108675519106319
- License:
- Abstract: Vertebral compression fractures (VCFs) are a common and potentially serious consequence of osteoporosis. Yet, they often remain undiagnosed. Opportunistic screening, which involves automated analysis of medical imaging data acquired primarily for other purposes, is a cost-effective method to identify undiagnosed VCFs. In high-stakes scenarios like opportunistic medical diagnosis, model interpretability is a key factor for the adoption of AI recommendations. Rule-based methods are inherently explainable and closely align with clinical guidelines, but they are not immediately applicable to high-dimensional data such as CT scans. To address this gap, we introduce a neurosymbolic approach for VCF detection in CT volumes. The proposed model combines deep learning (DL) for vertebral segmentation with a shape-based algorithm (SBA) that analyzes vertebral height distributions in salient anatomical regions. This allows for the definition of a rule set over the height distributions to detect VCFs. Evaluation of VerSe19 dataset shows that our method achieves an accuracy of 96% and a sensitivity of 91% in VCF detection. In comparison, a black box model, DenseNet, achieved an accuracy of 95% and sensitivity of 91% in the same dataset. Our results demonstrate that our intrinsically explainable approach can match or surpass the performance of black box deep neural networks while providing additional insights into why a prediction was made. This transparency can enhance clinician's trust thus, supporting more informed decision-making in VCF diagnosis and treatment planning.
- Abstract(参考訳): 椎間板圧迫骨折(VCFs)は骨粗しょう症の一般的な原因であり、潜在的に重篤な結果である。
しかし、診断されていないことが多い。
オポチュニティ・スクリーニングは、主に他の目的のために取得された医用画像データの自動解析を含む、未診断のVCFを識別するコスト効率の高い方法である。
機会論的診断のような高度なシナリオでは、モデル解釈可能性がAIレコメンデーションの採用の鍵となる。
ルールベースの手法は本質的に説明可能であり、臨床ガイドラインと密接に一致しているが、CTスキャンのような高次元データにはすぐには適用できない。
このギャップに対処するために、CTボリュームにおけるVCF検出のためのニューロシンボリックアプローチを導入する。
提案モデルでは, 椎体分割のための深層学習(DL)と, 解剖学的領域における脊椎の高さ分布を解析する形状ベースアルゴリズム(SBA)を組み合わせる。
これにより、高さ分布上に設定された規則を定義してVCFを検出することができる。
VerSe19データセットの評価は,本手法が精度96%,感度91%のVCF検出を実現していることを示している。
比較として、ブラックボックスモデルであるDenseNetは95%の精度と、同じデータセットで91%の感度を達成した。
その結果、我々の本質的な説明可能なアプローチは、ブラックボックスの深層ニューラルネットワークの性能にマッチしたり、超えたりできると同時に、なぜ予測が下されたのかについてのさらなる洞察を提供することができた。
この透明性は、臨床医の信頼を高め、VCFの診断と治療計画においてより深い意思決定を支援する。
関連論文リスト
- Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - Reconstruction of Patient-Specific Confounders in AI-based Radiologic
Image Interpretation using Generative Pretraining [12.656718786788758]
本稿では,DiffChestと呼ばれる自己条件拡散モデルを提案し,胸部X線画像のデータセット上で訓練する。
DiffChest氏は、患者固有のレベルでの分類を説明し、モデルを誤解させる可能性のある要因を視覚化する。
本研究は,医用画像分類における拡散モデルに基づく事前訓練の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-09-29T10:38:08Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
補綴関節感染症(PJI)は重篤な合併症である。
現在,CT画像とPJIの数値テキストデータを組み合わせた統一診断基準が確立されていない。
本研究では,ディープラーニングとマルチモーダル技術に基づく診断手法であるHGTを紹介する。
論文 参考訳(メタデータ) (2023-05-29T11:25:57Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
本研究の目的は、胸部CTスキャンから新型コロナウイルスを機械学習で検出することである。
提案したモデルは0.927の総合精度と0.958の感度を得た。
論文 参考訳(メタデータ) (2022-06-15T18:35:22Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Accelerating COVID-19 Differential Diagnosis with Explainable Ultrasound
Image Analysis [7.471424290647929]
われわれは106本のビデオからなる新型コロナウイルスの肺超音波(US)データセットを公開している。
我々は、フレームベースの畳み込みニューラルネットワークを提案し、COVID-19 USビデオの感度0.98+0.04、特異度0.91+-08で正しく分類する。
論文 参考訳(メタデータ) (2020-09-13T23:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。