Non-Convex Tensor Recovery from Local Measurements
- URL: http://arxiv.org/abs/2412.17281v1
- Date: Mon, 23 Dec 2024 05:04:56 GMT
- Title: Non-Convex Tensor Recovery from Local Measurements
- Authors: Tongle Wu, Ying Sun, Jicong Fan,
- Abstract summary: Motivated by the settings where sensing the entire tensor is infeasible, this paper proposes a novel tensor compressed sensing model, where measurements are only obtained from each iteration via a gradient.
We prove that ScaleAlt-PGD-Alt-DMin achieves $mathcal O(log frac1epsilon)$ and improves the sample to $mathcal Oleft.
- Score: 22.688595434116777
- License:
- Abstract: Motivated by the settings where sensing the entire tensor is infeasible, this paper proposes a novel tensor compressed sensing model, where measurements are only obtained from sensing each lateral slice via mutually independent matrices. Leveraging the low tubal rank structure, we reparameterize the unknown tensor ${\boldsymbol {\mathcal X}}^\star$ using two compact tensor factors and formulate the recovery problem as a nonconvex minimization problem. To solve the problem, we first propose an alternating minimization algorithm, termed \textsf{Alt-PGD-Min}, that iteratively optimizes the two factors using a projected gradient descent and an exact minimization step, respectively. Despite nonconvexity, we prove that \textsf{Alt-PGD-Min} achieves $\epsilon$-accuracy recovery with $\mathcal O\left( \kappa^2 \log \frac{1}{\epsilon}\right)$ iteration complexity and $\mathcal O\left( \kappa^6rn_3\log n_3 \left( \kappa^2r\left(n_1 + n_2 \right) + n_1 \log \frac{1}{\epsilon}\right) \right)$ sample complexity, where $\kappa$ denotes tensor condition number of $\boldsymbol{\mathcal X}^\star$. To further accelerate the convergence, especially when the tensor is ill-conditioned with large $\kappa$, we prove \textsf{Alt-ScalePGD-Min} that preconditions the gradient update using an approximate Hessian that can be computed efficiently. We show that \textsf{Alt-ScalePGD-Min} achieves $\kappa$ independent iteration complexity $\mathcal O(\log \frac{1}{\epsilon})$ and improves the sample complexity to $\mathcal O\left( \kappa^4 rn_3 \log n_3 \left( \kappa^4r(n_1+n_2) + n_1 \log \frac{1}{\epsilon}\right) \right)$. Experiments validate the effectiveness of the proposed methods.
Related papers
- Algorithmic contiguity from low-degree conjecture and applications in correlated random graphs [0.0]
We provide evidence of computational hardness for two problems.
One of the main ingredient in our proof is to derive certain forms of emphalgorithm contiguity between two probability measures.
This framework provides a useful tool for performing reductions between different tasks.
arXiv Detail & Related papers (2025-02-14T00:24:51Z) - Overcomplete Tensor Decomposition via Koszul-Young Flattenings [63.01248796170617]
We give a new algorithm for decomposing an $n_times n times n_3$ tensor as the sum of a minimal number of rank-1 terms.
We show that an even more general class of degree-$d$s cannot surpass rank $Cn$ for a constant $C = C(d)$.
arXiv Detail & Related papers (2024-11-21T17:41:09Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ with a complexity that is not governed by information exponents.
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Average-Case Complexity of Tensor Decomposition for Low-Degree
Polynomials [93.59919600451487]
"Statistical-computational gaps" occur in many statistical inference tasks.
We consider a model for random order-3 decomposition where one component is slightly larger in norm than the rest.
We show that tensor entries can accurately estimate the largest component when $ll n3/2$ but fail to do so when $rgg n3/2$.
arXiv Detail & Related papers (2022-11-10T00:40:37Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - The First Optimal Algorithm for Smooth and
Strongly-Convex-Strongly-Concave Minimax Optimization [88.91190483500932]
In this paper, we revisit the smooth and strongly-strongly-concave minimax optimization problem.
Existing state-of-the-art methods do not match lower bound $Omegaleft(sqrtkappa_xkappa_ylog3 (kappa_xkappa_y)logfrac1epsilonright)$.
We fix this fundamental issue by providing the first algorithm with $mathcalOleft( sqrtkappa_xkappa_ylog
arXiv Detail & Related papers (2022-05-11T17:33:07Z) - Decentralized Stochastic Variance Reduced Extragradient Method [25.21457349137344]
This paper studies decentralized convex-concave minimax optimization problems of the form $min_xmax_y fx,y triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msumi=1m f_i triqfrac1msum
arXiv Detail & Related papers (2022-02-01T16:06:20Z) - Infinite-Horizon Offline Reinforcement Learning with Linear Function
Approximation: Curse of Dimensionality and Algorithm [46.36534144138337]
In this paper, we investigate the sample complexity of policy evaluation in offline reinforcement learning.
Under the low distribution shift assumption, we show that there is an algorithm that needs at most $Oleft(maxleft fracleftVert thetapirightVert _24varepsilon4logfracddelta,frac1varepsilon2left(d+logfrac1deltaright)right right)$ samples to approximate the
arXiv Detail & Related papers (2021-03-17T18:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.